LTE/LTE-A MIMO原理与应用

分享到:

 

1 概述

天线技术和信号处理技术的发展,也让越来越多的人意识到通过多天线技术实现传输速率的增加是一种有效方式。MIMO(mutiple input mutiple output,多输入多输出)技术应运而生,它通过采用空时编码(STC),利用多天线阵列实现空间分集、复用或者波束赋形,在有限的带宽内极大的提高了频谱效率。因此,MIMO成为Wimax, LTE, 802.11n以及几乎所有未来“热门”的无线通信系统所必不可少的关键技术之一。

3GPP Release8版本中定义的LTE采用了MIMO技术,其下行的峰值速率最高可达300 Mbp(4×4 MIMO)和150 Mbps(2×2 MIMO)。为了保持3GPP标准的技术优势和市场竞争优势,3GPP于2008年4月正式开始了LTE演进标准——LTE-Advanced(以下简称LTE-A)研究和制定,采用了上行4×4 MIMO和下行8×8MIMO技术。

 

2 LTE-A MIMO应用场景

回顾香农定理,信道极限速率与可用带宽及信噪比有关系。在带宽一定的条件下只有打信噪比的主意了。也就是通过提升信噪比来提速,但是当信噪比提升到一定程度后再提升信噪比的话,速率虽然会提升,但提升的不明显了,画成曲线的话,其走势类似对数曲线。

C = BLOG2 +(1+ S/N)(1)

可见,当信噪比很差的时候,通过提升信噪比可使速率明显提升,因此应用传输分集和波束赋形技术可以有效提高接收信号的信噪比,从而提高传输速率和覆盖范围。而当信噪比已经不错的情况下,再通过提高信噪比来获取速率的提升就不明显了。这也是为什么尽管成本高,运营商也会让MIMO空分复用模式登场的原因。即在现实中,信噪比很好的条件下想要大幅提升速率只有另辟蹊径,通过空间这个新的维度来增加速率了,也就是说,在离基站信号不远的条件下适合MIMO的空分复用模式。而在基站边缘或覆盖不好的情况下,用波束赋形来提升信噪比更适合。下面来详细看看LTE-A MIMO技术的分类和应用场景。

 

2.1 空分复用

无线信号在密集城区、室内覆盖等环境中会频繁反射,使得多个空间信道之间的衰落特性更加独立,从而使得空分复用的效果更加明显。无线信号在市郊、农村地区多径分量少,各空间信道之间的相关性较大,因此空分复用的效果要差许多。

现 实中MIMO通信网络的部署也能从上述分析中得到启示:在一个典型的小区蜂窝网中,基站往往架设在较高的地方,四面开阔,极少有反射体和遮挡物,所以为了 保证MIMO系统享有较好的性能,通常在基站侧要拉大天线间的间距(至少为5~10倍波长),从而保证足够多的不相关的多径信号;而在用户侧情况就不同 了。我们周围充斥着大量的建筑、墙体,用户本身就处在天然的、丰富的反射体包围中,所以用户设备一般不需要太大的天线间距就可以满足性能的需求(一般为波 长的0.5~1倍),现在不用担心将来的手机长着像牛角一样分叉的天线了。

对 于适用于密集城区地区的MIMO应用,可以用开环MIMO和闭环MIMO 2种MIMO模式选择,如图所示。1其中闭环MIMO由于基站依赖终端的反馈信息进行预编码,对环境要求较高,但由于拥有PMI/RI的反馈调整,其数据 可靠性较强;对于开环MIMO,其健壮性较强,对SNR要求和信道相关性要求不如闭环MIMO严格。

图1 MIMO空分复用的2种实现形式:开环与闭环
图1 MIMO空分复用的2种实现形式:开环与闭环