解决5G挑战,GaN兵来将挡!

分享到:

在近日举行的线上研讨会上,Qorvo无线基础设施和国防产品大客户销售经理万文豪就“如何利用GaN扩展5G基础设施网络”的话题给大家做了精彩的分享,小编整理后摘要如下。

1

 

毫米波频谱的应用、大规模 MIMO系统、高级编码和调制方案以及集成式回程和云接入等新兴关键技术共同使5G成为可能 。但是随着数据速率的快速增长,更高的频率和带宽需求成了新一代网络开发者必须解决的问题,再加上运营商们降低成本的附加要求,5G的实现充满挑战。

这些,都将是5G面临的挑战:

  • 最低工作频率从 2.6GHz 到 28GHz

  • 瞬时带宽从 20MHz 到 1GHz

  • 功率放大器的平均输出功率将从 60W攀升至 100或120W

  • 减少能耗提高效率

  • 降低总体物料成本

  • ……………

 

从几点重要特性了解GaN

“GaN”指氮化镓,一种 III-V 族半导体器件。这种器件的关键特点是,它们有着较高的带隙电压,约 3.4 电子伏,而较高的带隙电压意味着半导体器件可以承受较高工作电压,更高的电压则意味着开启了通往较高功率应用的大门。

2

 

不同材料的能隙与击穿电压对比

GaN 可以实现更高的功率密度。对于既定功率水平,GaN具有体积小的优势。有了更小的器件,则可以减小器件电容,从而使得较高带宽系统的设计变得更加轻松。

 

3

 

既定功率水平下相同电路不同材料的体积对比

GaN完美解决5G挑战

GaN让功率放大器设计变得简单

4

 

假设我们在设计一个如图所示的 100W 放大器,根据经典的负载线路理论,在理想状态下,对于给定电压和功率,所需负载为电压的平方除以2 与功率之积。对于基于 LDMOS 技术的 100W 器件,在电压为 28V时,所需负载线路电阻3.92Ω。而采用 GaN 技术,在 48V 条件下,所需负载线路电阻为 11.52Ω。在电路板上,把 11.52Ω 转换成 50Ω 比将 3.92Ω 转换成 50Ω要简单得多。

 

GaN具有高功率密度

 

5

 

左侧的 LDMOS 器件是市场上较高功率的产品之一,其峰值输出功率大于229W,中间所示为一种 GaN 器件,其宽度仅为 400 密耳,有望输出至少350W的功率。再往右是一款较小的外围器件,其尺寸为 6.6x7.7mm,输出功率为75-100W。高功率密度意味着更小的尺寸,同时意味着更小的PCB板面积。

 

对于给定功率水平,GaN 器件的能耗较低

较高的功率密度使得GaN器件只需较少的电池就可以输出、定量的功率。例如,基于硅的器件可能需要把 8节电池组合起来,以实现给定的功率水平。凭借功率密度较高的 GaN 器件,只需要2 节电池即可实现同一量的功率。因此,采用 GaN器件后,组合损耗会减少,以此实现更高的增益和效率。事实证明,相比传统的硅LDMOS器件,GaN器件在效率上平均提高10%。

 

GaN器件适合高频率、宽带宽的应用

采用较小器件的另一个衍生优势是输出电容减小了,小电容适合高频率应用。另一方面,器件的电容较低意味着输出电抗较低,而较低的输出电抗可以直接实现匹配网络,这种网络支持较宽的带宽。

 

最重要的是,GaN有利于节省成本

6

 

  • 在给定功率条件下,基于 GaN器件的设计组件数量少,所需 PCB 面积小

  • 工作在较高电压下的 GaN 器件的能耗低,降低电源方面的物料成本

  • GaN器件的能效高,从而减少了电力损耗,降低了运营商运维成本、

 

本次线上研讨会,主讲人万文豪还为大家阐述了运用GaN器件时可能会遇到的技术挑战,以及Qorvo最新GaN产品的性能参数,小编将在下几期推送中呈现相关内容。
 

关注Qorvo微信,第一时间获得更多新鲜资讯!

Qorvo官方微信公众号

继续阅读
室内信道定位算法性能提升策略解析

5G网络在室内环境中的定位挑战,提出了一系列性能提升策略,通过优化信号设计,如使用高峰值功率比的脉冲信号和增加信号带宽,来提高信号在复杂室内环境中的捕获和识别能力,同时提升信号的传输速度和抗干扰能力。强调了时间同步的重要性,提出了采用更精确的时钟同步技术(如卫星同步、网络同步和自同步)来确保各接收点的时间基准一致,并通过优化同步算法和硬件设计减少误差和延迟。

揭秘热设计:集成电路设计的关键密码

热设计是一个至关重要的课题,其中的各种规则、缩略语和复杂方程时常让人感到它似乎是个深不可测的神秘领域;但其对于集成电路设计的意义却不容忽视——毕竟,温度是导致大多数半导体在现实应用中失效的最大环境因素。元件的预期寿命会随着温度的每一度升高而缩短。

5G手机天线:性能升级,赋能多元应用场景新体验

5G手机天线性能提升的关键在于适应不同通信场景。在密集城区,采用大规模天线技术如Massive MIMO 3D赋形天线,增强覆盖和容量。一般城区和乡镇农村则采用多波束或普通天线,平衡成本与覆盖。移动场景下,需考虑移动性、信号衰减等因素。此外,随着物联网应用普及,天线还需支持设备间通信。优化天线布局、采用多天线技术、智能切换天线、选用优质材料以及优化信号处理算法,都能提升天线性能。协同设计与优化手机各部分,确保整体通信性能最佳。

5G手机天线:技术原理揭秘

5G手机天线作为无线通信的关键组件,基于电磁场原理实现电磁波的辐射和接收。在5G网络中,天线需支持高频段和复杂协议,实现高速低延迟的数据传输。其多频段支持满足全球通信需求,MIMO技术增强信号收发能力。然而,5G天线对金属敏感,需特殊设计和布局。其安装位置要求规则,避免遮挡,确保通信稳定性。随着技术发展,5G手机天线设计更紧凑轻便,性能更稳定。

5G基站端射频产业链发展新机遇(天线、PA、PCB、天线振子、滤波器、连接器)

在无线通信领域中,天线、功率放大器(PA)、印刷电路板(PCB)、天线振子、滤波器和连接器是构成无线通信系统的基础组件。它们各自在系统中扮演着不可或缺的角色,共同实现信号的传输、处理与连接。