Qorvo:标准确定后5G商用化进程将非常快

分享到:

美国Verizon计划2017年试商用5G网络,俄罗斯(2018世界杯)、韩国(2018冬奥会)、日本(2020奥运会)等国家也计划借助大型体育赛事的契机将5G商用。国际电联(ITU)给出的5G部署时间点是2020年,所以是否在2020年以前商用化5G,中国相关部门并没有明显的表态,但这并不意味着中国推进5G的进度比其他国家慢。近日一则新闻就引发了国人的关注:国际移动通信标准化组织3GPP宣布,5G控制信道编码中的短码采用华为主推的Polar码方案。


Qorvo基础设施和国防产品大客户销售经理万文豪表示,与5G国际标准在加紧制定相似,在5G发展上中国已经完成了很多关键技术的验证,例如大规模多入多出技术(Massive MIMO)、毫米波(本文中毫米波与微波同义)技术以及网络侧架构的设想等,接下来还会进行单基站性能测试、网络侧和应用侧的具体应用场景测试等技术验证。“第二步非常明确,低频(6GHz以下)技术发展会非常快,毕竟这个波段不像毫米波,毫米波还是有非常多的挑战。”万文豪说道。

 

Qorvo基础设施和国防产品大客户销售经理万文豪


毫米波技术的难点
万文豪告诉与非网记者,毫米波技术在基站侧的难点主要是如何设计网络架构。由于波长较短,高大建筑物很容易遮挡毫米波的传输,所以毫米波只能做视距传输。相比美欧,人口密度更高的亚洲地区部署毫米波通信的难度更高。“在美国有很多点对点的微波蜂窝系统,但中国就比较少见到。”他举例说。


虽然有挑战,但毫米波技术毕竟已经发展了几十年,在网络侧实现并不太难。“射频就是一个物理通道,并不需要要解决非常复杂的问题,它需要做的就是把路建得越来越宽阔平直,射频通路建设好了,效率、带宽都会上去。”


毫米波的真正挑战在手机端,万文豪认为传统手机厂商在毫米波应用上还没有比较明确的思路,最开始采用毫米波技术的终端设备可能是数据卡或者客户定制产品(CPE),然后慢慢过渡到手机。

 

“从技术上来看,传统的射频器件以砷化镓(GaAs)为主,毫米波要用到氮化镓(GaN),但现在氮化镓器件都是高压器件,”万文豪解释毫米波技术应用到手机上的难点,“如何做到低压,以适应手机对射频器件的要求,还需要比较长的历程。”

 

除了对射频器件要求极高以外,5G也将改变手机天线的设计。“微波肯定是Massive MIMO,手机端至少要有4根或8根天线。天线怎么放?射频前端放哪里?都是问题。”万文豪分析,由于微波通信速率高,为了减少中间损耗,应该将射频前端模组(FEM)与天线的距离尽可能缩短,甚至贴在一起。“贴在一起又带来一个问题,封装形式要变,传统是底部散热,以后可能会变成顶部散热。射频放大器芯片裸片的贴装形式将发生很大的改变。”


5G大规模商用时间仍然待定
虽然普遍预期5G大规模部署时间点是在2020年,但业内也有一种声音认为5G部署时间可能会被推迟。全球经济经济形势不太好是5G可能会被推迟的原因之一,另外一个原因是5G标准还没有完全落实下来。每一种标准都是背后不同利益集团之间的较量,利益集团之间的势力越均衡,标准冻结所需要花费的时间可能就会越长,在控制信道编码短码中的Polar码与LPDC码之争就是一个案例。万文豪认为,不同标准利益交叉的地方如何平衡,非常考验移动通信国际标准组织的智慧。

 

5G商用时间表

 

但他也表示,一旦标准全部冻结,5G商用化的进度会很快。“在标准制定过程中,设备厂商都对技术做了充分的试验,以验证技术可行性,器件级厂商也会与设备厂商合作,在标准冻结之前都会有相对成熟的原型机。所以标准定了,就说明问题基本上已经解决。”

 

如今4G网络部署已经很完善,而5G还没有到来,设备商与运营商在2020年之前主要工作是什么呢?通过4.5G或者Pre 5G等概念向5G逐步过渡是当前主要设备商与运营商的策略,据万文豪介绍,4.5G主要的技术有载波聚合和大规模多入多出技术。“现在的手机都已经支持载波聚合技术,以后更多集中在Massive MIMO实现上,逐渐完成从4G到5G的过渡。。利用Massive MIMO技术,手机可以支持更高的速率,但对基站的带宽要求也更高。”


氮化镓产业日趋成熟
作为一家“专注射频31年”的公司,Oorvo能提供的射频器件工艺极其广泛,从CMOS、砷化镓、氮化镓、磷化铟(InP)到SOI工艺都有布局。而氮化镓更是被Qorvo视为5G时代最重要的射频工艺之一。

 

Qorvo射频工艺很齐全

 

外媒曾有一篇文章详细介绍了氮化镓工艺的优势,该文章认为与砷化镓和磷化铟等高频工艺相比,氮化镓器件输出的功率更大;与LDCMOS和碳化硅(SiC)等功率工艺相比,氮化镓的频率特性更好。

 

万文豪也提到,与砷化镓相比,氮化镓的散热性更好,因此可以减小尺寸,更利于集成。不过相比LDMOS,氮化镓的成本还是高太多,但客户对氮化镓器件的接受程度已经发生了改变。“两年前客户只是试着了解一下这个技术,知道有这个东西,但现在完全是从产品化的角度来向我们咨询问题。”

 

GaN器件更有利于设备小型化


在基站侧,氮化镓器件渗透率已经不是个位数,据估计,2016年国内通信设备厂商氮化镓器件采用率将在10%至40%之间。

 

“我们希望氮化镓产业发展得更快、更好,不说取代LDMOS,至少要和LDMOS做到平分秋色。到做技术的人在选择氮化镓器件不再犹豫时,氮化镓这个产业就算成熟了。”万文豪总结道。

 

继续阅读
『这个知识不太冷』UWB背景信息介绍(上)

我们可以说UWB是当今最好、最先进的定位技术,但证据呢?要回答这个问题,我们需要透过现象看本质。本文将探讨UWB技术的内部工作原理,并概述UWB和窄带定位方法之间的差异。

氮化镓与碳化硅:电力电子封装与功率转换的革新之路

随着科技的不断进步,电力电子封装技术已成为当今研究领域的热点。氮化镓(GaN)和碳化硅(SiC)的崛起,为电力电子领域带来了前所未有的机遇与挑战。这两种宽带隙半导体材料在提升功率转换效率、减少能源浪费方面显示出巨大的潜力,引领着电力电子技术的革新。

Wi-Fi 7来袭!技术前沿揭秘,新兴无线化应用前瞻!

Wi-Fi 7 简介作为“一种新颖且创新的解决方案”,最新的Wi-Fi 7(也称为IEEE 802.11be)标准在此前Wi-Fi 6的基础上,引入了320MHz带宽、4096正交调幅(QAM)、多资源单元(RU)、多链路操作(MLO)、增强型多用户多路复用、输入多输出(MU-MIMO)和多接入点协调(Multi-AP Coordination)等多项前沿技术。

纤薄时代来临——引领下一代触控板设计的 MEMS 压力传感器

笔记本电脑触控板是MEMS压力传感器的又一理想应用领域。借助这些传感器,触控板不仅能够在厚度上远胜于当前的解决方案,更能提供与现有产品相媲美的多功能手势功能。点击视频,了解Qorvo SensorFusion™ 如何改变触控方式,并提升最终用户的体验~

电路仿真知多少:一劳永逸搞定运算放大器建模?

尽管IC设计工程师在运算放大器的设计中几乎不可避免地要用到SPICE,但在一些更大的应用电路中,使用SPICE来仿真最终的运算放大器却十分困难;或者至少比我想象的困难得多。本文旨在解决这一问题,希望能够为运算放大器建模提供一个一劳永逸的解决方案。