多普勒滤波器组基本简介

分享到:

多普勒滤波器组

雷达是如何能够同时检测来自多个不同目标的回波,然后根据多普勒频率的不同进行区别分类呢?从原理上来说是非常简单的,即雷达接收的回波信号通过被称为多普勒滤波器的一组数字滤波器来实现,如下图所示。

20180309042547855

接收的雷达回波信号经过一组并行的滤波器后实现多普勒频率分离。每个滤波器的设计都是为了得到一个较窄的多普勒频带,如图所示。在理想情况下,只有每个滤波器在接收信号的频率落在对应的频带内才会产生输出;

20180309042556546

而实际上由于滤波器旁瓣的原因,可能会在相邻频带内出现信号泄露。如果按照距离/多普勒频率进行排序,则在每个距离单元上进行独立的多普勒滤波处理。

多普勒滤波器组的每个中心频率点从低到高顺序排列,为了使相邻滤波器跨越目标频率时的信噪比损失最小化,滤波器的通带之间总会设计成相互交叠的形式,如图所示。因此,在滤波器组相互交叠的区域都可能会有相邻频率信号的泄露。

20180309042606595a

 

在忽略滤波器旁瓣的条件下,每个滤波器只能够通过某窄带频点的信号,当该信号的频点离滤波器的中心频率越近,输出的信号幅度也越大。为了最小化滤波器输出能量损失,当输入信号频率位于两个相邻滤波器之间时,采用相邻滤波器通带部分交叠的方法。

滤波器带宽

窄带滤波器的选择特性也是在一段持续时间内表现出来的;能够通过滤波器的频带宽度主要与信号的积累时间有关。

正弦信号(即脉冲波形)具有的频谱波形,如图所示。

20180309042619571

滤波器带宽与积累时间之间的关系与以前讨论的方法有一些不同,即:

· 保持滤波器调节系数为常数,按照一定的步进不断改变输入信号的频率;

· 滤波器积累时间控制在积累时间以内,确保信号持续时间至少为积累时间。

通过以上描述的方法,用图形化的手段绘制出窄带滤波器在不同频率点的响应曲线。窄带滤波器的中心主瓣区域是滤波器的通带,主瓣区域的中心频率为滤波器谐振频率。如图所示,滤波器频谱的两个过零点带宽为2除以积累时间。

20180309042632117

为了便于比较,将上图在方位上的尺寸进行了调整,使得二者之间的零点宽度看起来是相同的。需要记住的是,积累时间通常为毫秒量级,而脉冲宽度大约为积累时间的千分之一,在微秒量级上。

如同天线辐射方向图的主瓣一样,滤波器的3dB带宽(即输出功率降低到最大值一半时的宽度)比零点到零点的带宽更有用;与均匀辐射的天线相似,3dB带宽大约是零点到零点带宽的一半。即

20180309042641144

为了达到以上带宽,所应用的信号持续时间至少应当等于积累时间。在实际应用中,滤波器带宽通常是基于最大可用的积累时间来确定的。

如果雷达辐射的波形是脉冲形式的,为达到给定信号带宽就必须积累足够的脉冲数量,由此可以看出,滤波器的3dB带宽等于PRF除以积累脉冲数量。以上讨论的带宽是指最小可达到带宽,根据实际工程应用,由于数字加权带来的损失使得滤波器通带会有所展宽。

滤波器组的通带

在整个带宽内必须包括足够多的滤波器来估计多普勒频率的范围,从而能够覆盖到预期设计的目标速度范围。例如,预计最大的正多普勒频率为100kHz,最大的负多普勒频率为-30kHz,如下图所示,则滤波器组的通带范围至少为100 + 30 = 130kHz,雷达工作重频至少应大于130kHz。

当PRF大于最大与最小多普勒频率所包括的范围时,整个多普勒通带应当设计得足够宽以保证所有频率分量能够通过。

另一方面,如果PRF比期望的多普勒频率扩展范围小,则滤波器通带的设计值应当小于PRF。这也用另一种方式证明了Nyquist定理,即任何信号的采样频率都必须达到信号最高频率的两倍来避免模糊。

如下图所示,当PRF小于多普勒频率的扩展宽度时,目标多普勒的旁瓣谱线会落在通带以外,这时候只有目标多普勒的主瓣谱线能够经过滤波后输出。

20180309042700801

当PRF小于多普勒频率扩展范围时,滤波器带宽应当小于PRF,从而保证通带内只有一个目标信号存在。

下图描述了当滤波器通带等于PRF或时目标谱线移动与滤波器组之间的关系,从图中可以看出,在滤波器通带内始终只落入了目标的一根主谱线;随着目标多普勒频率从低到高移动,相对应的谐波谱线也在不断变化。

20180309042712622

一般将通带宽度设置为略小于,从而有效避免主瓣区域的地杂波,这样能够分离出静止杂波和运动目标。在实际中为了简化设计并不需要改变多普勒滤波器的频率,而是将雷达回波的频谱相对于滤波器组进行适当的搬移。

20180309042722242

 

继续阅读
自动驾驶的激光雷达,是否会伤眼?

当我们谈论自动驾驶安全时,很少有人提到人眼安全。 何为人眼安全?这两者有什么关系?恐怕大多数人都会心生疑问。不过在自动驾驶汽车全面部署前,这个问题必须得解决。

浅谈毫米波系统未来的发展

随着ADAS普及率的提升,要能够全方位覆盖汽车周围环境的感测,一辆汽车会装载“长+中+短”多颗毫米波雷达,到了最终L5级自动驾驶阶段甚至超过10颗,预计2021年全球毫米波雷达的出货量将达到8400万个。

无人机刺杀总统,这种事情如何用技术手段避免?

委内瑞拉总统马杜罗在首都加拉加斯出席一场军队纪念活动电视讲话时,现场发生了爆炸。

为什么77GHz毫米波雷达是业界主流?

由于世界各国的汽车安全标准、汽车电子化水平不断提高以及人们对驾驶安全需求不断增长,具备主动安全技术的ADAS系统呈现快速发展的势头。传感器技术是汽车电子的关键核心技术之一,各种传感器技术的创新发展为主动安全提供了技术可行性,汽车微波/毫米波雷达传感器正是实现该功能的核心部件之一。

国外对共形阵天线的一些研究

共形阵天线是和载体外形保持一致的天线阵,即将天线阵面与载体外形“共形”,增强了适应性,相对于平面阵天线有很大的优势。其中,柔性共形阵天线是更先进的一种共形阵天线技术,不仅可以和任意曲面共形,能够随着外形变化进行动态调整适应而且对于飞行器因气动、冷热等引起的振动和外形变化具有更好的适应性。