从 LDMOS 转向 GaN

分享到:

本文源自Qorvo半导体

相比其它半导体,GaN 是一种相对较新的技术,但它已然成为某些高射频、大功率应用的技术之选。虽然 LDMOS 技术目前仍在射频基站领域占有最大市场份额,但预计 GaN 将在 5G 大规模 MIMO 部署中逐渐取代 LDMOS。

在本系列的第一部分《5G 和 GaN 系列之一:全面了解 Sub-6Ghz 大规模 MIMO 基础设施》中,我们回顾了在全国范围内推动 5G 实施的大规模 MIMO 技术。尽管毫米波频率应用的潜力最终会显现,但在未来几年,5G 服务将主要采用 6GHz 以下频段传输。为实现 5G 服务目标,接下来几代基站设计都将要求显著提高射频前端的性能。

同时,工程师在设计基站时需要考虑更好地集成 RFFE 、缩小尺寸、降低功耗、提高输出功率、增加带宽、改进线性度,以及提高接收器灵敏度。所有这些都是为了满足收发器、RFFE 和天线之间更严格的耦合要求。这是一项艰巨的任务。满足这些需求并成功实现大规模 MIMO 的唯一方法就是使用经济高效的小型功率放大器,将它们集成进这些扩展的天线阵列。

◆◆助力 Sub-6 大规模 MIMO发展◆◆

自 20 世纪 90 年代,横向扩散金属氧化物半导体 (LDMOS) 技术开始进入射频功率放大器领域,尤其是 2GHz 以下频率应用,因为其成本较低。其最大的竞争对手为砷化镓(GaAs)放大器,后者非常适合更高频率应用,但其传输功率低且成本较高。2G 数字移动网络推出后,LDMOS 在射频基站领域取得了市场主导地位,并且保持至今。然而,随着 3G 和 4G 网络的推出,LDMOS 功率放大器并未达到前几代产品的功效水平。尽管使用 Doherty 拓扑结构和包络跟踪可以提升性能,但 2014 年在中国部署 4G LTE 期间,设备制造商和运营商开始将氮化镓 (GaN)用作射频功率应用的下一代半导体技术。

相比其它半导体,GaN 是一种相对较新的技术,但它已然成为某些高射频、大功率应用的技术之选,比如需要长距离或以高功率传输信号的应用,因此非常适用于 6GHz 以下的 5G 基站。高输出功率、线性度和功率效率促使网络 OEM 厂商从基于 LDMOS 技术的 PA 转向采用氮化镓技术的 PA。虽然 LDMOS 技术目前仍在射频基站领域占有最大市场份额,但预计 GaN 将在 5G 大规模 MIMO 部署中逐渐取代 LDMOS。

◆◆GaN 性能优势◆◆

更高功率密度是 GaN 的主要优势。由于 GaN 导带和价带之间的带隙要比 LDMOS 技术更高,所以 GaN 具有较高的击穿电压和功率密度,它可让信号以更高的功率水平传输,从而可扩大基站的覆盖范围。GaN PA 的高功率密度还使其能够采用更小的尺寸,从而减少了 PCB 空间需求。在给定区域内,系统设计人员可以实现比其它技术更高的功率。或者,对于给定的功率级,系统设计人员可以缩小 RFFE 尺寸并降低成本。

更高的功率密度使 GaN 功率放大器能够在高达 250℉ 的温度下运行,这是硅基技术无法实现的温度水平。GaN 具有更高的散热性能,可以简化系统的散热和冷却要求,从而进一步缩小尺寸,降低成本。大型电信运营商面临巨额基础设施支出压力,因此尺寸更小、成本更低的设备对于在全国范围内普及 5G 将会大有帮助。

GaN 具有更高的能效,有助于降低基站运行成本。运营商开始寻找最大程度降低网络功耗的方法,并促使 OEM 采用提高系统效率、节省总能耗的设计。为满足需求,工程师开始转而采用 GaN 技术。在 Doherty PA 配置中,GaN 的平均效率高达 60%,输出功率为 100 W,显著降低了运行大规模 MIMO 系统所需的电能。

GaN 在高频率和高带宽条件下的高效率还有助于缩小大规模 MIMO 系统的尺寸。尽管 LDMOS 放大器性能的改进支持高达 4 GHz 频率范围,但 GaN 放大器可以高达 5 倍的功率密度实现 100 GHz 的频率传输。由于 GaN 器件具备更高效率、更高输出阻抗和更低的寄生电容,因此更容易实现宽带匹配并扩展达到更高的输出功率。虽然这在毫米波应用中优势更为明显,但运营商可利用 6 GHz 以下频率同时在多个频段范围内进行传输。运营商将不需要多个窄带无线频带,他们只需要一个适用于多个频段的宽带无线平台。GaN 可提供实现这些系统所需的频率范围和灵活性,同时还可以轻松扩展,以实现未来高频毫米波传输。

这并不是说,GaN 始终都是每个射频功放应用的正确选择。通常情况下,LDMOS 的定价更低,并且可以在某些频率下提供极具竞争力的线性度。此外,GaAs 在某些细分市场具有其特有的效率优势。然而,许多 LDMOS 厂商开始转向 GAN 是有原因的。他们意识到 GaN 在帮助运营商和基站 OEM 厂商实现 Sub-6 GHz Massive MIMO 目标方面发挥着至关重要的作用。

因为 GaN 在基站中的采用,以及在国防和航空航天等其它行业的广泛应用,GaN 的产量逐年增长。产量提高意味着经济规模更大,从而使 GaN 成为更经济实惠的解决方案。这还没有考虑更高能效、更小外形尺寸或多频段应用所带来的成本降低效益。此外,线性度也将会随之提高。请记住,目前基站上使用的只是第二代 GaN 产品。LDMOS 之类的成熟技术已经达到 15 代。这是目前 GaN 领域中最活跃的研究课题,许多业内人士预计短期内有望实现市场领先的线性效率。

随着限制 GaN 广泛应用的约束因素逐渐消除,对于系统设计人员来说,了解如何将半导体器件应用到自己的设计变得至关重要。

◆◆嵌入式设计人员需要了解什么?◆◆

GaN 为嵌入式设计人员带来了许多性能优势,但毫无疑问也有一些这种材料独有的设计考量因素。本系列的下一篇将详细介绍嵌入式设计人员需要了解哪些内容才能充分利用 GaN 的潜力。我将在下一篇中纠正一些常见的误解,提供一些设计解决方案,并探讨 GaN 技术在射频应用及其它方面的发展。

5G 和 GaN 系列文章

1、全面了解 Sub-6Ghz 大规模 MIMO 基础设施

2、未来几年会出现哪些 GaN 创新技术?

 

继续阅读
室内信道定位算法性能提升策略解析

5G网络在室内环境中的定位挑战,提出了一系列性能提升策略,通过优化信号设计,如使用高峰值功率比的脉冲信号和增加信号带宽,来提高信号在复杂室内环境中的捕获和识别能力,同时提升信号的传输速度和抗干扰能力。强调了时间同步的重要性,提出了采用更精确的时钟同步技术(如卫星同步、网络同步和自同步)来确保各接收点的时间基准一致,并通过优化同步算法和硬件设计减少误差和延迟。

揭秘热设计:集成电路设计的关键密码

热设计是一个至关重要的课题,其中的各种规则、缩略语和复杂方程时常让人感到它似乎是个深不可测的神秘领域;但其对于集成电路设计的意义却不容忽视——毕竟,温度是导致大多数半导体在现实应用中失效的最大环境因素。元件的预期寿命会随着温度的每一度升高而缩短。

5G手机天线:性能升级,赋能多元应用场景新体验

5G手机天线性能提升的关键在于适应不同通信场景。在密集城区,采用大规模天线技术如Massive MIMO 3D赋形天线,增强覆盖和容量。一般城区和乡镇农村则采用多波束或普通天线,平衡成本与覆盖。移动场景下,需考虑移动性、信号衰减等因素。此外,随着物联网应用普及,天线还需支持设备间通信。优化天线布局、采用多天线技术、智能切换天线、选用优质材料以及优化信号处理算法,都能提升天线性能。协同设计与优化手机各部分,确保整体通信性能最佳。

5G手机天线:技术原理揭秘

5G手机天线作为无线通信的关键组件,基于电磁场原理实现电磁波的辐射和接收。在5G网络中,天线需支持高频段和复杂协议,实现高速低延迟的数据传输。其多频段支持满足全球通信需求,MIMO技术增强信号收发能力。然而,5G天线对金属敏感,需特殊设计和布局。其安装位置要求规则,避免遮挡,确保通信稳定性。随着技术发展,5G手机天线设计更紧凑轻便,性能更稳定。

5G基站端射频产业链发展新机遇(天线、PA、PCB、天线振子、滤波器、连接器)

在无线通信领域中,天线、功率放大器(PA)、印刷电路板(PCB)、天线振子、滤波器和连接器是构成无线通信系统的基础组件。它们各自在系统中扮演着不可或缺的角色,共同实现信号的传输、处理与连接。