【深度好文】关于BAW与SAW RF滤波器

分享到:

*本篇文章首发于Mouser Electronics网站,作者为Jean-Jacques(JJ)DeLisle
 
为何需要RF滤波器
 
射频RF)滤波器是所有RF/微波系统的基础元件,特别是具备多个信道或频段的无线通信系统。RF滤波器的主要功能是衰减某些不需要频段中的信号,而只对所需频段中的信号产生最小的影响。
 
RF滤波器至关重要;因为在许多情况下,不良信号(称为干扰)会导致系统功能下降甚至损坏。在无线通信系统中,接收器输入端使用各类RF滤波器来衰减所需频段之外的信号。RF滤波器还用于减少来自发射器电路的谐波、杂散内容和带外泄漏。在智能手机等现代电子产品的许多应用场景下,这些设备均配备数种无线通信技术;如果不使用RF滤波器进行适当隔离,这些技术间可能会产生相互干扰——即所谓的共存设计挑战(图1)。
 
Qorvo RF滤波器
图1:5G智能手机示例图
 
哪些应用需要RF滤波器?
 
由于大多数现代通信技术的紧凑设计限制了物理隔离,工程人员采用RF滤波器来增强所需的隔离效果,并确保这些产品符合必要的标准。这些标准可以是国家和国际监管机构制定的规范,例如美国联邦通信委员会(FCC)和全球电子通信委员会(ECC),以及Wi-Fi、4G/5G、蓝牙®和Zigbee等无线标准。许多现代电子产品还部署了要求额外滤波的特定功能,如全球定位系统(GPS)和其它地理定位技术,以及近场通信(NFC)技术。
 
考虑到现代无线通信系统尺寸极其紧凑的特点,也因此需要高度紧凑的滤波器;即便如此,这些滤波器仍要求较高的Q因数(品质因数),并可以很容易地集成至滤波器组,来用于多频段滤波应用。在许多情况下,每个频段都需要不同的RF滤波器,以尽量减少串扰并减轻非线性。为满足这一需求,工程师们经常使用声波滤波器(AWF)。
 
本质上,AWF由压电基板上的电声换能器构成,可以将电能转化为声能/机械能,反之亦然。基于这种方式,AWF将高频信号转换为声波信号,然后通过声学谐振器和滤波技术进行调节,最终转换回高频信号。与其它电磁滤波器技术相比,其优势在于声波现象比电磁滤波现象大约小五个数量级。实际上,这些因素导致声学滤波器在类似的性能下可以比传统电磁滤波器小一个数量级。
 
电子书好物
 
Qorvo RF滤波器
《RF滤波器傻瓜书》
 
AWF包含两种主要类型——体声波(BAW)和表面声波(SAW)滤波器——其使用叉指式换能器转换电和声学信号。BAW滤波器引导信号能量通过基板的主体,而SAW滤波器引导信号能量沿基板表面传递。虽然这种区别起初看起来很简单,但现实中,不同的方法会导致性能和频率能力的显着差异。
 
由于制造过程主要包括表面结构的开发,SAW滤波器的设计和制造通常不那么复杂。相反,BAW滤波器则需要精确控制基板厚度与分层结构,例如在堆叠中精确间隔的声反射器。
 
然而,由于表面电声转导的物理限制,与BAW滤波器相关的相对尺寸和物理特性允许它们能够被设计成比SAW技术更高的频率操作和更高的Q因数。此外,BAW滤波器可以利用与标准IC加工系统兼容的技术制造,并且通常表现出更高的功率处理能力。尽管有些SAW滤波器技术结合了温度补偿设计功能,或以其它方式制造,以尽量减少温度敏感性,但BAW滤波器的温度漂移仍比SAW滤波器低。
 
一般来说,SAW滤波器可以在实际中制造用于2000MHz或2500MHz的频率;相比之下,BAW滤波器可达到10GHz甚至更高。因此,SAW和BAW技术在100MHz和大约2500MHz的频率范围内存在直接竞争。
 
工程师何时会使用BAW与SAW?
 
在为特定应用选择滤波器时,必须了解滤波器应用的要求并解读滤波器的电气规格。每个滤波器应用都会对中心频率、带宽、所需信号电平和抑制要求等提出需求。系统工程师通常会列出这些系统要求;工程人员在选择滤波器时,要确保滤波器在保持预算的前提下满足这些要求,并制定一个将滤波器纳入系统设计中的计划。对于现代无线设备,通常涉及到设计由许多滤波器组成的滤波器组,以满足严格的要求和符合无线与监管机构的标准。
 
以下为RF滤波器设计的关键电气规格:
 
滤波器类型(低通、高通、带通、陷波/通抑制)
通带频率(Hz)
抑制频率(Hz)
抑制或带外抑制(dB)
衰减(dB)
插入损耗(dB)
隔离度(dB)
选择性(dB)
Q因数
纹波(dB)
输入功率处理(dB)
输入和输出阻抗匹配(欧姆)
 
大多数无线通信标准强调带通滤波器与其它几个带通滤波器串联使用,以实现多频段滤波。这已成为SAW和BAW滤波器一个应用广泛的典型场景;因为与其它滤波器技术相比,其紧凑的尺寸允许相对较小的滤波器组。这些带通滤波器的作用是减少接收器所接触到的带外信号内容。这是一个重要的功能,因为带外频率内容会形成具有较低信噪比(SNR)或较高误码率(BER)的脱敏接收器。此外,滤波器常用在发射器输出端,以减少由相对较高功率的发射器设备产生的非线性结果,如谐波和尖峰。滤波器的这一辅助应用增强了邻道泄漏比(ACLR)和邻道功率比(ACPR)。此外,通过此种滤波器使用方式,原本无法通过无线标准测试的无线发射器可能会通过测试,而无需大量的重新设计工作。
 
还有一些情况是,一部已被设计和部署的无线通信系统在早期评估中并未被发现实地运行时会面临的挑战。在这种情况下,如果能够通过更严格的滤波来解决,则可以利用增强的滤波器来升级无线电,以缓解这些问题。例如,如果无线电在关键工作频段附近遇到干扰,那么具备更高Q因数和更佳的带外抑制能力的滤波器将带来比现有滤波器更好的操作。
 
一般来说,SAW滤波器比BAW滤波器便宜,而且市场上存在大量的SAW滤波器可供选择。SAW滤波器一般不提供超过250MHz的工作频率。然而,如果设计中需要最强的性能或更高的工作频率(例如,在3G、4G、Wi-Fi 6E和sub-6GHz 5G的更高频率),那么BAW滤波器是更好的选择(图2)。BAW滤波器的设计通常是为了获得相比SAW滤波器更高的频率操作和更优秀的通带衰减、带外抑制、功率处理,以及Q因数。
 
Qorvo RF滤波器
图2:BAW与SAW多路复用器滤波器的比较
 
是否有针对特定应用的专用滤波器?
 
SAW和BAW滤波器必须精确设计以实现所需的操作。针对某个特定应用,可以定制SAW和BAW滤波器并量产。幸运的是,BAW和SAW滤波器制造商非常倾向于设计并量产满足Wi-Fi和4G LTE/5G等各类市场和应用需要的专用SAW和BAW滤波器。特定的BAW和SAW滤波器也是为了应对无线标准共存的突出挑战,如Wi-Fi和低功耗蓝牙®(LE)。
 
一个广泛使用的声学滤波器的例子是用于5G NR TDD频段n79的Qorvo QPQ4900 BAW滤波器(图3)。这一子带通BAW滤波器,专为附近可能存在Wi-Fi 6E无线网络潜在干扰场景下的宏基站与小型基站而设计。另一个例子是Qorvo QPQ1063 GPS SAW双工器,设计用于L1/L2 GPS频段。
 
Qorvo RF滤波器
图3:Qorvo QPQ4900 n79子频段BAW滤波器
 
结论
 
RF滤波器是现代无线通信系统中的关键部件;它们衰减不需要的频段,以尽量减少干扰并确保系统的正常功能。由于技术的物理限制,RF滤波器并不总十分理想,并可能会导致通带频率的一些损失。声波滤波器,特别是BAW和SAW滤波器,由于其小尺寸和高Q因数而成为备受欢迎的选择。SAW滤波器的设计和制造并不非常复杂,而BAW滤波器带来更高的频率操作和更强的Q因数性能。工程师们必须考虑其滤波应用的要求和滤波器的电气规格——如滤波器类型、通带、阻带,和插入损耗——来为他们的系统设计选择合适的滤波器。
继续阅读
UWB技术:车辆定位新纪元,未来已来

UWB技术在车辆定位、无线通信和智能驾驶中扮演关键角色。其高精度ToF测量法为车辆内外定位提供支持,实现个性化服务、自动泊车等功能。同时,UWB技术允许车辆与手机等设备通信,实现远程控制及车辆间协同工作,提升道路交通效率和安全性。未来,UWB将追求更高精度、低功耗和与其他无线技术的融合,以实现更广泛应用。此外,UWB技术将探索智能感知和决策功能,结合AI和ML算法实现智能控制,并推动标准化进程以降低成本和门槛,促进全球普及。

UWB破局之道:技术瓶颈与升级秘籍

UWB(超宽带)技术在室内定位领域具有高精度的优势,但高昂的设备和人力成本以及复杂环境下的性能挑战限制了其广泛应用。在确保定位精度的同时,成本控制成为关键。UWB系统需要具备智能、自适应的算法来应对多径衰落等复杂环境挑战,并通过硬件底层优化平衡性能与功耗等指标。此外,UWB技术与其他无线通信技术的融合以及国际标准的制定也是推动其商业化的重要方向。同时,必须重视用户位置信息的隐私保护。

UWB技术揭秘:超宽带,精准定位新境界

UWB(超宽带)技术基于无载波通信技术,通过发射极短时间的窄脉冲(纳秒级别)来传输信息。这些脉冲在时域上尖锐,频域上占据宽频带,因此具有高速数据传输和精确定位能力。UWB系统采用不同调制技术将信息编码到脉冲中,由于脉冲宽度窄,UWB技术在定位和测距应用上表现出色。UWB技术以低功耗、高数据传输速率和定位精度广泛应用于电力巡检、仓储物流、司法监狱监控、工业制造、汽车工业、智能家居和机器人导航等领域,有效提升了管理效率、安全性和运动分析精度。

UWB技术是如何打破传统技术局限,实现全新突破的?

在制造业领域,超宽带(UWB)技术已崭露头角,成为产品和部件定位的革命性工具,提供无与伦比的精确度。虽然获取产品或部件的精确位置信息看似微不足道,但这项技术的重要意义远不止于简单的库存管理——UWB正在改变制造业的未来。

PWM驱动革新:H桥电机电路智能未来已来

随着技术的不断发展,PWM控制H桥驱动电机电路面临着更高的性能要求,特别是在提高电路效率和降低功耗方面。未来,这类电路将趋向智能化、自动化,集成更多传感器和智能控制算法,实现精确灵活的控制。同时,结合云计算、边缘计算等技术,将实现远程监控、故障诊断和预测维护,提高系统可靠性和可用性。集成化和模块化设计将减少制造成本,并提高系统的灵活性和可扩展性。