所有文章

毫米波与太赫兹技术双驱动,无线通信如何重塑万物互联新时代?
毫米波(30GHz - 300GHz)与太赫兹(0.1THz - 10THz)技术凭借丰富频谱、短波长、低延迟等特性,为无线通信带来变革。其大带宽实现高速传输,结合波束赋形增强信号,低延迟满足高时效需求,还推动设备小型化。尽管面临传播损耗大等挑战,随着关键技术突破,正重塑万物互联新时代。

6G通信技术原理探究:从太赫兹到多天线系统的应用
6G聚焦太赫兹频段挖掘频谱资源,其大带宽可实现数百Gbps以上速率,满足全息通信等需求。但太赫兹波传播损耗大,6G借助超密集组网、波束成形等技术应对,同时研发新半导体材料解决设备功耗与散热问题。多天线系统中,Massive MIMO及RIS技术持续优化,搭配先进数字信号处理与AI算法,为6G奠定坚实技术基石。

射频模块:模块化设计如何重塑通信设备生态?
射频模块通过模块化设计,集成射频收发器等关键功能单元,借助 SiP、倒装芯片等先进封装技术,以及 GaN、GaAs 等新材料,实现高度集成与性能升级。其革新通信设备研发生产模式,拓展多领域应用,虽面临兼容性与高频设计挑战,但随着技术融合,未来将持续推动通信生态变革。

WiFi7技术深度解析:智能家居的“加速引擎”
在智能家居设备数量激增的背景下,WiFi7作为新一代无线局域网标准应运而生。其通过物理层320MHz甚至640MHz超宽信道、4096-QAM高阶调制及MLO多链路操作,MAC层E-MU-MIMO与OFDMA技术升级,实现高速率、低延迟传输,为智能家居发展提供技术支撑。

低功耗、强穿透:NB-IoT技术如何为物联网发展提供新动能
NB-IoT凭借低功耗与强穿透特性赋能物联网发展,低功耗源于优化通信模式、半双工设计及节能技术,延长设备续航;强穿透依靠窄带载波与高功率谱密度技术实现深度覆盖。其基于蜂窝网络架构,采用随机接入与调度算法保障通信,与多技术融合发展的同时也面临安全、容量等挑战。

UWB赋能智慧工厂:实时定位系统如何提升工业效率?
UWB技术基于纳秒级极窄脉冲传输,利用ToF或TDOA原理,通过测量信号传播时间实现厘米级高精度定位,其超宽带、低能量密度特性赋予强抗干扰能力。在智慧工厂中,UWB实时定位系统通过追踪人员、设备和物料,优化资源调度,提升生产与安全管理效率,推动工业智能化升级。

蓝牙是如何“无线连接”的?一文看懂其通信原理
蓝牙基于2.4GHz ISM频段,采用跳频扩频技术应对频段干扰,以主从架构通过时分复用实现全双工通信,经发现、配对、连接三阶段建立链路,利用分组交换传输数据,结合前向纠错与循环冗余校验保障准确性,技术持续演进满足多样场景需求。

射频 vs. 基带:无线通信中的两大核心模块有何不同?
在无线通信系统中,射频模块通过数模转换、调制、放大等操作,将基带信号转换为射频信号发射,并在接收时反向还原;基带模块则对原始数据进行编码、调制、纠错等数字处理。二者各司其职,射频侧重无线传输,基带聚焦信号处理,共同保障通信系统高效运行。

卫星通信与射频技术:低轨星座推动全球连接革命
卫星通信借助电磁波传输,低轨卫星因轨道低、延迟小成发展热点。低轨星座通过大量卫星组网,利用星间链路连接,依赖射频技术实现信号收发与处理。射频技术涵盖调制解调、功率放大等环节,面临频谱管理、干扰抑制等挑战,其创新发展推动低轨星座构建全球连接网络。

微波射频链路的“心脏”:低噪声放大器(LNA)与混频器
在微波射频链路中,低噪声放大器(LNA)与混频器是核心器件。LNA通过微弱信号放大提升系统接收灵敏度,其噪声性能由噪声系数决定,电路结构含单端、差分等多种形式;混频器则利用信号相乘实现频率转换,降低信号处理难度。二者性能指标影响链路质量,新技术发展为其带来创新突破。

毫米波技术全面解析:5G时代的高频通信核心
毫米波技术是5G时代高频通信核心,其30GHz - 300GHz频段频谱丰富,能实现高速传输且利于天线小型化集成。但因传播损耗大、绕射与穿透能力弱、易受环境干扰等特性,需依赖Massive MIMO、波束赋形、新型天线设计及先进信号处理技术。目前多用于热点扩容与室内覆盖,未来潜力巨大。

从WiFi 6到WiFi 7:新一代无线技术重新定义家庭网络体验
WiFi 6通过OFDMA、MU-MIMO及1024-QAM等技术,实现多用户并行传输与抗干扰能力提升,显著优化网络效率;WiFi 7在此基础上,以320MHz超大带宽、4096-QAM和MLO技术,将理论速率提升近三倍,强化多频段协同与资源调度,二者迭代推动家庭网络向高速、低延迟、智能互联演进。

从技术到场景:Qorvo联合Murata打通UWB落地“最后一公里”
在智能制造与消费电子智能化的浪潮中,厘米级实时定位能力已成为制造业、医疗健康、智慧物流等领域的重要需求。作为全球领先的连接和电源解决方案供应商,Qorvo携手日本电子元件巨头Murata,推出革新性的Type 2AB模块。这款产品不仅融合了Qorvo自主研发的尖端UWB芯片,更通过开放的软硬件生态,重新定义了高精度室内定位的行业标准,为千行百业的数字化转型注入硬核驱动力。

解析6G核心原理:通感算一体化技术如何实现万物智联?
6G通感算一体化技术通过融合通信、感知与计算功能,突破传统网络架构局限。它以太赫兹频段与智能超表面实现高速通信,借通信信号回波分析达成环境感知,依托边缘计算节点完成数据本地处理,并通过多功能芯片异构集成与智能算法优化资源分配,为万物智联提供关键技术支撑。

探秘RFID核心技术:射频信号交互与标签识别的底层实现逻辑
RFID技术基于射频信号交互实现自动识别,其系统由标签、读写器和天线构成。读写器发射电磁波激活标签,通过ASK、FSK等调制技术下行传输数据,标签利用反向散射调制回传信息。防碰撞算法解决多标签识别干扰,加密机制保障数据安全,与新兴技术融合拓展应用边界,为物联网发展提供核心支撑。

天线极化技术详解:线极化、圆极化背后的电磁波矢量控制原理
天线极化技术是无线通信关键技术,核心在于电磁波矢量控制。线极化中电场矢量轨迹为直线,分水平与垂直极化,设备简单但易因极化失配产生信号损失。圆极化的电场矢量轨迹呈圆形,通过两个幅度相等、相位差90°的正交线极化波实现,抗多径干扰能力强。

一文看懂EMC:电磁兼容的核心原理与关键技术
电磁兼容(EMC)指电子设备在其电磁环境中正常工作且不干扰其他设备的能力,核心基于电磁学与电路理论,涵盖干扰源、耦合途径和敏感设备三要素。电磁干扰分传导与辐射两类,通过屏蔽、滤波、接地等技术抑制。

微波通信的奥秘:电磁波频段如何重塑信息传输
微波通信利用300MHz-300GHz频段电磁波传输信息,基于高频短波特性实现大容量传输。其系统由发射机、接收机和传输介质构成,通过调幅、调频、调相调制信号。自由空间、波导和光纤等传输介质各有特性,利用微波直线传播、抗干扰强等优势,结合技术手段克服大气影响,实现高效可靠通信。

从实验室到商用:GaN(氮化镓)如何颠覆射频功率放大器?
氮化镓(GaN)作为第三代宽禁带半导体材料,凭借高击穿电场、高电子饱和漂移速度及良好热导率等特性,显著提升射频功率放大器性能。相比硅基、砷化镓器件,其在功率输出、效率、高频特性与线性度上优势突出。尽管面临成本与可靠性挑战,通过工艺优化和规模化生产逐步改善,在5G、军事、卫星通信等领域应用前景广阔。

厘米级定位!UWB在自动驾驶与物流中的关键作用
UWB(超宽带)技术凭借纳秒级非正弦波窄脉冲传输数据,利用信号飞行时间和到达角度,基于多边定位算法实现厘米级定位。其超宽带信号时域特性赋予高时间分辨率,能规避多径效应与干扰,即使在复杂环境也可保持稳定精度,为自动驾驶和智慧物流提供关键定位支撑。