射频无线技术在TPMS中的应用

分享到:

        目前的TPMS(tire pressure monitoring system)主要分为两种类型,一种是间接式的,一种就是直接式的。而直接式的TPMS系统一直因其报警准确性差、在无线传输中受到轮毂的屏蔽电磁波和磁场的干扰而影响其进一步的发展。本文以Nordic公司生产的射频芯片为基础,介绍了汽车TPMS系统的无线收发系统的电路设计与解决方案,从而对上述直接式的TPMS系统加以改进。

  近几年来无线数据传输技术己经成为小型工业监控系统的主要组成部分,此类无线数据传输和现存的有线数据传输以及其他无线数据传输相比较而言,工业监控中的无线数据传输主要使用射频(RF)技术来发送和接收数据包。整个系统的各个部分都是服务于无线数据传输这个目的,所以在整个系统的软件设计中,无线数据的传输部分(射频模块)就为最主要部分。射频就是射频电流,它是一种高频交流变化电磁波的简称,每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流,射频技术在无线通信领域具有广泛的、不可替代的作用。

  1 TPMS系统的设计


   本文中提到的TPMS系统是通过射频信息的收发与相关信息的提示来完成的。在轮胎部分的主要有压力检测模块与射频发射模块,在驾驶员部分主要有射频接收模块和显示报警模块。

  压力检测模块主要是实时的检测所测轮胎的压力数据,并将数据进行相应的变化存储到中心处理器上,等待射频发射模块进行发射。在射频接收模块接收到数据后对数据进行相应的处理并将数据在附件LCD上进行显示,并判断数据的安全性,在发现轮胎的压力超出了所能接受的范围后通过蜂鸣器进行报警提醒驾驶员。具体的工作原理图如图1所示。

  2 无线收发芯片的比较与选择

  由于无线收发芯片的种类和数量比较多,无线收发芯片的选择在设计中是至关重要的,正确的选择可减小开发难度,缩短开发周期,降低成本,将产品更快推向市场。选择无线收发芯片时应考虑需要几点凶素:功耗、发射功率、接收灵敏度、收发芯片所需的外围元器件数量、芯片成本、数据传输是否需要进行曼彻斯特编码等。

  用来评价无线数据收发的几项重要指标有:接收灵敏度、动态范围、选择性、接收频率稳定度、发射输比功率、效率、发射频率范围、功耗等因素。下面对市场上的现阶段比较流行的三种无线收发芯片进行了相关的性能比较,如表1所列。


  对照表1以及技术指标的表述,对于接收和发送数据,满足频段的范围越大,灵敏度越高,在相同条什下的接收电流越小,发射电流越大,所需外围器件越少等条件的收发芯片应用也就越广泛,并且可以适合于多种情况。

  综合以上考虑,nRF905的优越性就很明显了,所以在本设计中选择nRF905是最适用的。

  3 nRF905的简介

  无线收发芯片nRF905是挪威Nordic公司推出的一款单片无线收发一体的芯片。nRF905足一款工作在433/868/915频段上的单片射频收发器,因为所使用的是国际上的ISM 频段,因此并没有所谓的频段限制。nRF905由完全集成的电源管理、频率合成器、调制接收器、功率放大器、晶体振荡器和调节器构成。nRF905具有ShockBurst特点,能够自动处理数据包中的前导码和CRC校验码。通过SPI接口,可以很容易地对nRF905的配置操作进行编程。nRF905的耗电量非常低。在发射模式下,以-10dBm的输出功率进行发射耗电最仅为11mA;同样的功率在接收模式下耗电量为12.5mA。而其POWERDOWN掉电模式下则可以更加省电。

  3.1 nRF905的控制模式

  nRF905有两种激活模式和两种省电模式。

  激活模式包括ShockBurst RX接收模式和ShockBurst TX发射模式。省电模式包括PowerDown andSPI-programming掉电和SPI编程模式和Standby andSPI-programming待机和SPI编程模式。

  TRX_CE、TX_EN和PWR的设置决定了模式的控制,具体的控制如表2所列。

  3.2 单片机与nRF905的连接

  nRF905与外界的通信通过一个SPI接口来进行,速率由微控制器设置的接口速度决定。在RX模式中,地址匹配(AM)和数据准备就绪(DR)信号通知MCU一个有效的地址和数据包已经各自接收完成,微控制器即可通过SPI读取接收的数据。在TX模式中,无线通信模块自动产生前导码和CRC校验码,数据准备就绪信号通知MCU数据传输已经完成。

这里采用的是ATMEL公司生产的与8051完全兼容的AT89S52系列单片机,因为要和模块进行通信,而对模块的控制郁是通过nRF905的SPI接口总线来进行的,因为AT89S52没有专门的SPI总线,因此在这里为了和nRF905的无线模块通信则采用单片机的I/O端口进行软件编程模拟SPI的时序来实现SPI接口。这里把用来进行模式控制的(TXEN、TRX_CE、PWR)管脚和SPI接口控制的(MISO、MOSI、SCK、CSN)管脚与单片机的P2端口对应相连,状态输出的(AM、DR、CD)管脚与单片机P3端口的2到4位相连,图2就是单片机与nRF905模块的简单的电路连接。


                                                                                        4 系统的软件设计

继续阅读
2016~2022年 5G将重塑射频前端模块市场新版图

5G带来新的天线滤波器需求,手机射频前端(RFFront-end)组件市场规模可望因此大幅成长。根据研究机构Yole Développement预测,智能型手机使用的RF前端模块与组件市场,2016年产值为101亿美元,到了2022年,预计将会成长至227亿美元。如此快速的成长与5G使用新的天线、多载波聚合等技术密不可分,这些新技术将需要额外的滤波功能,并带动相关组件市场蓬勃发展。

5G通信带动GaN 技术的崛起

在射频和功率应用中,氮化镓(GaN)技术正日益盛行已成为行业共识。

航天科工二院23所新体制雷达预先研究论著出版

近日,由中国航天科工二院23所科技委主任鲁耀兵和雷达研发中心主任高红卫合著的雷达技术著作——《分布孔径雷达》,由国防工业出版社出版发行。

麦克斯韦(Maxwell)的遗产 一位微波工程师的心得体会

自从我学会了如何从右端握住电烙铁后,与射频相伴的工作便成了我的酷爱。数字化电磁学(EM)已经吸引了我过去二十年的注意力。渐渐地,我开始了以“在过去的好时光”的方式来回味麦克斯韦方程。我开始对麦克斯韦这个家伙产生了兴趣(图1)。历史学家们公认他是19 世纪最出色的物理学家,与爱因斯坦(Einstein)和牛顿(Newton)齐名。任何一个书店或图书馆都有爱因斯坦和牛顿的传记…那么麦克斯韦的传记又在哪里呢?

5G标准是如何制定的

5G标准由诸多技术组成,编码是非常基础的技术。在5G相关标准中,世界各大阵营一度曾就信道编码标准争辩激烈。2016年,中国通信企业力推的Polar成为控制信道编码。这是中国在信道编码领域首次突破,为中国在5G标准中争取较以往更多的话语权奠定了基础。“从这个角度看,中国在一定程度上可以说已跻身世界前列”。