一种应用于射频卡的集成稳压电路的设计

分享到:

1. 引言

  近年来,随着无线通信技术,微电子技术的发展,非接触式IC卡(射频卡)技术蓬勃发展,并在众多领域里得到了迅速的普及和推广,如公交自动售票系统、居民身份证卡、电话卡、银行卡等。无源供电技术是射频卡的关键技术之一,目前主要是通过电磁感应原理和集成稳压电路来解决的。当射频卡进入阅读器磁场时,通过电磁感应从磁场中获得能量,即在卡的线圈两端感应出交流电流,经过整流稳压后可得到直流电压。本文讨论一种采用0.35um CMOS工艺专为射频卡设计的自反馈开关式稳压电路。

2. 稳压电路的结构设计和工作原理

  集成稳压电路也称集成电压调整器,当输入电压或输出电流在一定范围内变化时,其输出电压保持不变。它已被广泛应用于各种电子设备中,以取代分立器件组装的稳压电源。

2.1 电路结构设计

  该集成稳压电路主要包括以下几个部分:基准源电路,电压调节电路和电源开关电路。

  基准源电路由二级CMOS差分放大电路和晶体管电路构成的能隙基准源组成。其结构如图1。

        有源电阻P0和多晶电阻R7组成偏置电路,为电路提供偏置电流。二级差分放大器的两个输入连接在Q1端和Q2端,由基准源原理可知只有放大电路的输入失调电压很小,并且不受温度的影响时,基准源的输出才可以保持好的性能。根据放大器的作用和能隙基准源原理可得:

  I1R6=I2R4 (1)

  由(1)式可知电路中放大器的输入失调电压接近为零。故稳定后REF点的电压值为下式:

  VREF=VQ1+VR6=VQ1+R6I1= VQ1+R4I2 (2)

  因PNP晶体管的基极和集电极相连,故VQ1值相当于晶体管中BE结二极管的正向压降VBE 值,VBE一般为0.6~0.8V。

  晶体管中BE结二极管的温度系数为负,而电阻的温度系数为正,在(2)式中VQ1和VR6随温度的变化可以相互补偿,故该基准源的输出VREF对温度变化不敏感。

  电压调节电路是稳压电路中的核心部分,包括两个一级CMOS差分放大电路COMP和电压调节及反馈电路,如图2。

        两个差分放大器的输入由分压电阻得到,比较放大后经反馈调节和限流保护电路得到MA1和MB1以来控制电源开关电路中开关管的开启和截止。

  电源开关电路由储能电容,NMOS管构成的整流器及开关电路组成,如图3。P1,P2直接连到线圈L0的两端,通过电磁耦合在P1,P2上感应出交流电,经整流后在储能电容C0端产生直流电压VDD。调压电容C5在N2管导通后构成放电回路使P1,P2上的电流开始对C5充电而停止对C0充电,使C0两端电压保持稳定,即为负载电路提供稳定的电源电压。

        射频卡进入阅读器的磁场时,经线圈电磁耦合后在P1,P2上产生交流感应电流,通过整流器转换成直流电流,同时对储能电容C0和电压调节电容C5进行充电。C5电容很小,通过整流器的电流瞬间可将其充满,由于N2管截止在C5两边没有放电回路,故P1,P2上的电流将只对电容C0充电,C0两端产生电源电压VDD,VDD随着电容充电过程而不断升高。整流器中有源电阻和二极管的作用使得P1,P2两端的电压幅值上升,导致a点的电位也随之上升;同时,电压采样电路的输出也随着VDD的升高而升高。当VDD电压值达到V0时(见图4),采样输出电压都大于基准电压VREF,此时电压调节电路中输出MA1,MB1的电压值能够使N1,N2这两个管子先后开启。因N2管源端接地,N2管导通后a上的电压开始降低,使得P1,P2再次对C5进行充电。由于N2管一直处于导通状态,故C5也同时开始放电,此后C5和N2管一直处于一边充电一边放电的状态,且a点电压在一定的范围内振荡。C5的充放电通过反馈使得P1、P2上电压峰值保持在一定的电位上,也不再对电容C0继续充电,故C0两端的电压差保持稳定。此时得到的VDD就是我们所需要的工作电压。射频卡正常工作时由于负载电路的消耗,储能电容C0上的电压会随之下降,当VDD值小于V0值时N2管将截止,C5电容没放电回路,P1,P2对C5充电充满后,将对C0继续充电使C0两端的压差增大,即VDD上升。这样电路中就形成了一个自反馈的稳压电源。

3. 模拟结果

  在射频卡正常工作环境中,卡和阅读器的耦合系数很小一般为0.1~0.35左右,阅读器信号电压一般为12V。仿真验证中,加12V、13.56MHz的测试激励以在电感L0上得到感应电流。采用0.35um的SPICE模型,耦合系数设为0.25,得到VDD稳定电压为3.35V,Hspice仿真结果见图4:

4. 结论

  通过上述的设计和仿真分析,可知此稳压电路可在短时间内获得稳定电压,并可自动调整;多目标流片测试结果基本与仿真结果一致亦达到设计要求,故具有较好的实用性和参考价值。


作者:马纪丰 陈伟元 宫俊

继续阅读
阅读器的天线设计

RFID(Radio Frequency Identification)技术目前应用广泛,常见的有门禁系统、公交刷卡系统、图书管理系统等。

一种RFID小型圆极化四臂螺旋天线

设计了一种用于UHF频段射频识别系统的小型右手圆极化四臂螺旋天线。天线由印制在微带介质板的4个长条形臂组成,通过微带功分器馈电。天线在进行4个端口的单独匹配和功分器相连时,需采用一种新的匹配方法。通过仿真优化,天线尺寸为60 mm x60 mm x6 mm,峰值增益为3.8 dB,带内轴比<3 dB,3 dB波束宽度>120°,前后比>15 dB。实物测试结果与仿真结果吻合。

远距离射频卡在车联网中的应用

射频识别技术可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。给机动车安装射频信息卡、各交通路口安装电子采集装置、交警配备便携式电子采集装置,城市道路网将形成一个机动车物联网。

远距离射频卡在机动车物联网技术中的应用

给机动车安装射频信息卡、各交通路口安装电子采集装置、交警配备便携式电子采集装置,城市道路网将形成一个机动车物联网。行进车辆如同在网中游动的数字游标,交管部门可通过相应电子装置采集机动车信息,从而监控中心便可获取网中的车辆号牌及行驶路线,在电子采集装置的覆盖范围内容易实现交通管理电子化、信息化、智能化。

多种RFID标签标准的射频识别阅读器设计

本文通过对软件无线电和RFID 系统的学习研究,采用LabVIEW图形化编程语言设计了一个基于软件无线电的RFID仿真阅读器。通过与标准阅读器的读取结果进行比对,这一设计能够实现标准阅读器的读取功能。从而实现了通过加载不同软件来读写符合不同标准的RFID标签的功能,适合于多种不同标准的标签同时应用的场合。