选择RF和微波滤波器的八大窍门

标签:VSWR
分享到:

        如果没有考虑滤波器类型和最低技术规格要求方面的基本要素,可能导致产品不能通过“测试”,结果产品又得重新开始设计,导致代价昂贵的生产推迟。另一方面,懂得如何准确确定滤波器参数,将有助于使生产出的产品满足客户的生产标准和功能。事实上,这种知识有助于在提高产品在市场上的成功机会的同时,控制生产费用。

从基础开始 

        在当今无线领域,激烈的扩展带宽的竞争迫使人们要更加关注滤波器的性能。如果对滤波器参数确定不准确,最终会导致频率冲突,反过来使设计组又得处理串扰、掉线、数据丢失以及网络连接中断的问题。 

        滤波器定义不完整或不准确这一问题产生的部分原因是目前电子市场对数字电子很热衷。根据某些统计,80%~90%的新电子设计工程师都是软件和数字方面的。知识缺口就在于此,因为不管传输的信息是否是数字形式,当信息通过无线电或微波传输时,载波信号总是遵守电磁学物理定律。 

        所幸的是,对滤波器性能参数的某些重要基础进行快速重温,可帮助工程师正确找出满足特定应用的滤波器。开始时如果选择正确,则能节省时间和金钱,在订购这些必不可少的元件时就能确保价廉物美。

1.了解基本响应曲线 

        滤波器的基本响应曲线包括:带通、低通、高通、带阻、双工器,如图1A-1F所示。每一个特定形状都决定了哪些频率可以通过,哪些不能通过。 

        无疑,这一组中最常见的是带通滤波器。所有工程师都知道,带通滤波器允许两个特定频率之间的信号通过,对其它频率的信号进行抑制。例如声表面波滤波器(SAW)、晶体滤波器、陶瓷和腔体滤波器。作为参考,Anatech Electronics公司制造的腔体带通滤波器的频率覆盖范围为15 MHz~20 GHz,带宽在1%~100%范围。下表给出了Anatech Electronics公司的集总元件带通滤波器的全部技术参数。所有制造商都采用了用滤波器中心频率两边0.5 dB、1 dB或3 dB衰减点定义通频带的方法。

2.包括所有必要的技术参数
 

        经常出现这一情况,工程师给出一个需要“一个100 MHz带通滤波器”的简短要求,这一要求显然信息量太少了。滤波器供应商实在难以根据这么点信息就签单。 

        给出所有必要的信息从详细给出所有频率参数开始,如:

  • 中心频率(Fo): 通常定义为带通滤波器(或带阻滤波器)的两个3 dB点之间的中点,一般用两个3 dB点的算术平均来表示。
  • 截止频率(Fc):为低通滤波器或高通滤波器的通带到阻带开始的转换点,该转换点一般为3 dB点。
  • 抑制频率:信号衰减某些特定值或值的集合的特定频率或频率组。有时定义理想通带之外的频率区为抑制频率或频率组,所经过的衰减称为抑制。

        滤波器类型决定了特定频率。对带通和带阻滤波器,特定频率为中心频率。对低通和高通滤波器,特定频率为截止频率。 
        
        为了完整起见,工程师还应定义下列特性,如:

  • 阻带:滤波器不传输的特定频率值之间的频率带。
  • 隔离:双工器中,考虑接收(Rx)通道时为抑制传输(Tx)频率的能力,考虑传输(Tx)频率时为抑制接收(Rx)频率的能力,称为Rx/Tx隔离。隔离度越高,滤波器能够将Rx信号与Tx信号隔离开的能力就越强,反之亦然。其结果是传输和接收信号都更加干净。
  • 插入损耗(IL):表示器件中功率损耗的一个值,IL =10Log(Pl/Pin), 与频率无关,其中Pl为负载功率,Pin为从发生器输入的功率。
  • 回波损耗(RL):为滤波器性能的一种度量,表示滤波器输入和输出阻抗接近理想阻抗值的程度。回波损耗定义为:RL = 10Log(Pr/Pin),与频率无关,其中Pr为反射回发生器的功率。
  • 群延迟(GD):群延迟表示器件相位线性的大小。由于相位延迟出现于滤波器的输出端,了解这种相移随频率的变化是否为线性很重要。如果相移随频率非线性变化,输出波形将发生畸变。群延迟定义为相移随频率变化的导数。因为线性函数的导数为常数,所以线性相移引起的群延迟为常数。
  • 形状因子(SF):滤波器的形状因子通常为阻带带宽(BW)与3 dB带宽的比值。它是滤波器边缘的陡峭程度的一种量度。例如,如果40 dB带宽为40 MHz,3 dB带宽10 MHz,则形状因子为40/10=4。
  • 阻抗:以欧姆为单位的滤波器源阻抗(输入)和端接阻抗(输出)。一般情况下,输入阻抗和输出阻抗相同。
  • 相对衰减:测到的最小衰减点处衰减与理想抑制点的衰减的差异。通常,相对衰减以dBc为单位表示。
  • 纹波(Ar):表示滤波器通频带平坦度的大小,一般以分贝表示。滤波器纹波的大小影响回波损耗。纹波越大,则回波损耗越严重,反之亦然。
  • 抑制:同上。
  • 工作温度:滤波器设计的工作温度范围。

3.不要追求不切实际的滤波器特性 

        工程师有时会提出如下的要求:“我需要通频带为1,490~1,510 MHz,1,511 MHz处的抑制大小为70 dB。”这一要求无法实现。实际上,抑制是逐渐变化的,不是90°急剧下降,更实际的参数为偏离中心频率约10%。 

        另一个情况是要求滤波器例如“抑制1,960 MHz频率以上的所有成分。”这时,工程师必须意识到不可能衰减该抑制频率直到无限高频率之间的所有频率。必须设置某些边界。更现实的方法或许是,将通频带附近的特定抑制频率衰减两到三倍。

继续阅读
【干货】分享天线驻波比问题

本文不打算重复很多无线电技术书籍中关于电压驻波比的理论叙述,只是想从感性认识的层面谈几个实用问题。

手机RF前端设计挑战

 在过去十年中,手机经历了巨大的变革。面世伊始仅供人们通话和收发短信的手机,现在已经转变为多功能手持设备,融电话、Web浏览器、短信工具、照相机、游戏机、MP3播放器和很多实用功能于一体,能够满足人们的移动信息需求。此外,当前的手机用户不仅需要这些功能,而且还要求能够随时随地使用这些功能。

低噪声放大器的两种设计方法

  通过对晶体管进行定性分析, 可以根据实际需要选择低噪声前置放大器的设计方案, 第一种方案的最佳噪声系数是以牺牲增益而得到的; 第二种方案是以提高噪声系数为代价, 降低驻波比VSWR 的值得到的。2 种方法利用计算机辅助设计工具均可以快速实现, 各有各自的存在价值, 这在很多场合都得到了应用。

凌力尔特推出40MHz至6GHz双通道、匹配RMS功率检测器

6GHz 匹配双通道 RMS 检测器实现准确的 VSWR 测量

选择RF和微波滤波器的八大窍门

如果没有考虑滤波器类型和最低技术规格要求方面的基本要素,可能导致产品不能通过“测试”,结果产品又得重新开始设计,导致代价昂贵的生产推迟。