使用频谱分析仪测量二代身份证(RFID)读卡器

分享到:

面对目前国内蓬勃发展的RFID产业,固纬提供了完善的RFID阅读器和电子标签测量方案。这篇应用技术文档讲述进行RFID阅读器的工作频点和发射功率量测的基本操作过程,以及工程师如何使用GW GSP-830频谱分析仪对RFID读卡器进行精确测量。

1.关于RFID

RFID是射频识别(Radio Frequency Identification)的英文缩写,它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可识别高速运动物体并能同时识别多个标签。

最基本的RFID系统由阅读器(Reader)、电子标签(Tag)亦即应答器(Transponder) 和天线(Antenna)三部分组成。其工作原理是Reader发射一特定频率的无线电波能量给Transponder, 用以驱动Transponder电路将内部的数据送出,此时Reader便依序接收解读数据, 送给应用程序做相应的处理。发生在Reader和Transponder之间的射频信号的耦合类型有两种。

(1)电感耦合。变压器模型,通过空间高频交变磁场实现耦合,依据的是电磁感应定律。电感耦合方式一般适合于中、低频工作的近距离射频识别系统。典型的工作频率有:125kHz、225kHz和13.56MHz。识别作用距离小于1m,典型作用距离为10~20cra。

(2) 电磁反向散射耦合:雷达原理模型,发射出去的电磁波,碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律。电磁反向散射耦合方式一般适合于高频、微波工作的远距离射频识别系统。典型的工作频率有:433MHz,915MHz,2.45GHz,5.8GHz。识别作用距离大于1m,典型作用距离为3—l0m。

阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和标签之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。 在实际应用中,可进一步通过Ethernet或WLAN等实现对物体识别信息的采集、处理及远程传送等管理功能。

2.连接范例

范例使用山东神思电子的通用二代居民身份证验证机具,需要测量该读卡器的工作频点和发射功率。由于该读卡器工作时不间断向空间发射RF,因此只要使用频谱仪和普通RF天线即可直接测量读卡器的信号。为了避免空间杂讯的影响,可使用环形近场天线。将环形天线连接到频谱仪RF输入端(如图1),再将环形天线接收断靠近读卡器感应区(如图2),这样就构成一套简单易行的RFID读卡器测试系统。


                                                                                                                                             图1


                                                                                                                            图 2

3.信号的捕获和测量

设置GSP-830中心测量频率为13.56MHz,Span 5MHz,参考电平20dBm,RBW自动(30KHz),游标1打开,Trace B实时更新,限制线关闭。

当读卡器上不放置二代身份证卡片(读卡器不读卡)时,读卡器持续向空间发射13.56MHz,功率15dBm的RF信号,如图3红色曲线所示。该RF信号也可用示波器观察到,如图4所示。



                                                                                                                                            图3



                                                                                                                                                图4

当将二代身份证卡片(Tag)放置在读卡器感应区,Tag感应到读卡器RF发射信号的电磁场,凭借感应电流所获得的能量向读卡器返回存储在芯片中的信息,返回信号是一个载波13.56MHz的双边带调制信号。读卡器读取信息并解码后,送至中央信息系统进行有关数据处理,读取速度为每秒一次。

GSP-830频谱仪同样可以对Tag的返回信号进行量测。天线耦合方法如图1和图2所示。并设置频谱仪中心频率为13.56MHz,Span 5MHz,参考电平20dBm,RBW自动(30KHz),Trace A峰值保持。捕获到的Tag返回信号如图3绿色曲线所示,两个边带的频率分别为12.7MHz和14.4MHz。

4.结语

以上使用固纬频谱仪检测RFID读卡器的应用实例也是一种通用检测方案,可广泛应用在RFID读卡器和主动式电子标签研发过程中的调试、产线的检验等多个方面。

由于RFID本身有着十分宽广的使用领域,如物流和供应管理、生产制造和装配、航空行李处理、邮件/快运包裹处理、商用POS机、文档追踪/图书馆管理、动物身份标识、运动计时、门禁控制/电子门票、道路自动收费等,因此该套测试解决方案的应用前景也是非常可观的。

继续阅读
RFID如何给零售食品保质保鲜?

对于所有行业的零售商来说,可持续发展越来越受欢迎。食品杂货商和CPG组织对可持续发展措施特别感兴趣,这反映了公众对食品浪费、碳足迹和其他绿色举措的意识日益增强。

RFID技术严控服装生产计划进度

RFID技术应用在生产线管理已经非常普遍,通过RFID自动采集技术能够对生产数据和设备状态数据进行自动采集上传,为生产管理平台建立生产线工序环节的“实时数据库”。

RFID用或不用,关乎零售商的生死存亡

美国有太多零售商已没有能力复苏了,因为他们没有使用重要的库存技术RFID来升级其业务,尽管多年来人们一直建议他们使用RFID技术。

RFID技术促进了畜牧业的现代化养殖

随着RFID技术的发展,智慧农业一直成为关注的重点。畜牧产品在人民生活中占据了重要的位置,畜牧养殖业的食品安全也在不断严格化管控。

工业4.0的RFID为什么要保护?物联网通信安全须重视

射频识别(RFID)技术长期以来一直是现代工业的重要基础之一。不显眼和无处不在的RFID标签已经成为商品和信息在工业生产过程中导航的货币。从最初的内部和外部物流领域,即小型RFID标签以完全透明和易于跟踪的方式帮助货物从A点转移到B点,该技术已经扩展到其他领域,如访问控制或制造执行系统。