射频模拟电路

分享到:

作者分析了国内外一些相关文献,结合自己的教学体会和科研实践,编写了本书。本书主要特色:1.面向学生,始终强调基本概念、基本原理、基本电路和基本测试方法。2.本书力求精练易于阅读,重要结论和基本概念一目了然。3.删除了陈旧的内容,增加了新的内容.例如,增加了"给性功率放大器"、“射频电子系统”和“射频电路集成芯片”。4.附录A收录了对于高频宽带匹配、网络实现现实的指导意义及工程应用价值的“传输线变压器的原理及应用”的内容。

本书可以作为电子工程、通信工程、通信工程、自动控制等电类专业相关课程的本科生(或专科生)教材,也可供相关人员参考。


继续阅读
包络跟踪基础原理与测试技术

现在,包络跟踪技术被越来越广泛地运用于优化射频功率放大器(PA)的功率附加效率(PAE),而射频功率放大器射频PA正是电池电量最主要的消耗源之一。本文介绍了怎样使用来自射频功率放大器PA的数据实现包络跟踪ET,以确定关键的包络跟踪参数。基于这些参数,工程师基于测量系统并对其进行分析。

干货 | 射频电路4大基础特性,看完秒懂!

本文从射频界面、小的期望信号、大的干扰信号、相邻频道的干扰四个方面解读射频电路4大基础特性,并给出了在PCB设计过程中需要特别注意的重要因素。

特征阻抗、VSWR和反射系数的那点事!

在学习射频和微波的基本原理过程中,也许没有比理解特性阻抗的概念更为重要了。当我们在谈论50欧姆或75欧姆电缆时,其实我们是在说电缆的特征阻抗为50欧姆,75欧姆等等。也许您还记得,在关于特性阻抗常见的介绍里,总是成片的数学公式和各种参数,以及几句聊胜于无的文字介绍,实在令人沮丧。于是本文,我们尝试用一种更为直观的方式来做一下阐释。

GaN射频技术发展趋势

以5G为代表的Sub 6G通信射频系统非常复杂,尤其是那些需要使用高载波频率和宽频带的新技术,包括载波聚合、Massive MIMO等。为此,很多半导体公司在技术上全面开花希望利用先进的半导体工艺技术应对甚至引领新一代的通信技术需求。以ADI为例,该公司全面拥有GaN、GaAs和SiGe以及28纳米CMOS等完整工艺,努力打造更具高集成度、低功耗和低成本的整合系统解决方案。 然而,在下一步的5G系统部署以及高端测试应用和卫星及航天应用中,无疑以高带宽和大功率为优势的GaN是其中的佼佼者,正在进入许多应用

Wi-Fi三频系统的基本组成部分-5.2 GHz射频滤波器

作为工程师,我们一直在寻找针对复杂系统设计挑战的最简单解决方案。5.2 GHz Wi-Fi领域的解决方案再无其他。在此,我们将逐步指导您解决这些问题,以降低设计复杂性,同时满足那些苛刻的最终产品合规性要求。