UWB与WMAN无线电系统的先期验证

分享到:

         采用正交频分多路转换(OFDM)实体层的无线区域网路(WLAN),目前已经在全球各地广泛地进行商业建置,它主要是根据IEEE 802.11a/g OFDM 无线电标准。现在设计工程师正使用移动无线平台专用的多模态IEEE 802.11a/b/g 晶片组,来提升IC 整合的程度,以配合价格低廉的无线上网服务。新兴的IEEE 802.15.3a超宽频(UWB)和IEEE 802.16d 无线都会区域网路(WMAN, 又称WiMAX)标准,将促使IC 设计朝更高资料速率的OFDM 应用发展。

         过去三年产业全力开发WLAN OFDM 产品的结果,不但改革了设计与验证的程序,还因为强调初期验证而提升了设计的效率,并因此加快了在竞争激烈的消费者市场引进新的OFDM 产品的脚步。零中频(Zero IF)的CMOS RFIC 彻底颠覆了WLAN 的设计,让低价产品得以展现经济效益。这些产品通常包括基频和RFIC,它们会在电路板层级的模组或封装内整合一些晶片外(off-chip)元件,像是功率放大器、滤波器和天线,如图1 所示。

         RF 和基频IC 通常会整合到参考无线电(reference radio)的原型中,以便在量产IC 之前进行系统层级的OFDM无线电认证测试。举例来说,使用可程控的基频IC 补偿演算法,可以减少RF IC的瑕疵,而这些演算法必须在系统层级的参考无线电测试过程中进行验证。将模拟与验证工具整合在一起的好处是,WLAN无线电系统设计工程师不必等到后期整合时才能找出RFIC 或基频演算法中的问题,而是在设计流程的初期就能验证重要的OFDM 无线电规格。

         在整合的设计流程中,一开始必须进行RF 和基频IC 的模拟,以便在tape-out之前验证重要的规格,进而缩短设计週期。在模拟的过程中应执行各项虚拟量测,亦即分析候选OFDM 设计,以取得发射器的差错向量幅度(EVM),并且进行除错。将模拟时所合成的测试信号下载到仪器中,可产生OFDM 测试信号以评估原型IC。至于接收器的信号撷取与误码率(BER)测试,则必须在包含发射器失真、通道瑕疵及不想要的干扰信号下执行。为简化设计程序,可使用事先设好的测试与验证设定,依据发射器频谱、EVM 和BER 等效能量测标准来评估设计。

         OFDM 无线电系统

         遵循IEEE 802.15.3a 标准的UWB 无线个人网路(WPAN),使用低于11 GHz的载波频率及110 到480 Mbp s的资料速率,提供短距离(<30 呎)的应用,例如家庭办公室的无线USB 和串流视频。遵循IEEE 802.16d 标准的无线都会区域网路(WMAN)则使用低于11 GHz 的载波频率及最高75 Mbps 的资料速率,提供4 到6哩远的宽频无线上网(BWA),或“最后一哩”上网服务。由于频谱管理单位、标准制定组织、工业团体及各个协会都在推动IEEE 标准,究竟哪些标准会胜出目前还不明朗。一般认为各家WLAN产品厂商针对消费性产品的相互操作性所做的努力,将有助于IEEE 802.11a/b/g 标准成为全球的无线网路标准。至于新兴的WPAN/WMAN 标准,还得花上好几年的时间才能完成。在各界竞相推出新标准的这段期间,OFDM 无线电晶片设计师需要有弹性的设计与验证工具,以便因应不同的标准来设定新的模拟与测试解决方案。  

         加速新兴的OFDM 产品的开发

         混合信号系统整合单晶片(SoC)的验证作业,可在IC tape-out 及交付生产之前,根据模拟的行为和元件模型来确保设计达到效能规格。目前0.1 um IC 的生产过程都很久,所需的光罩成本大约是100万美金。内含几千万个闸的SoC 设计,往往需要用到几千亿个二进位测试码型(测试向量);产生及模拟无数个输入组合,可以确保设计永远不会发生无法恢復的状态。工程小组可能要花上总设计时间的50% 到70% 来执行验证工作。生产混合信号SoC 最大的挑战之一,就是必须为模拟和数字信号开发出适合的test benches,以便在自动化的设计与验证流程中控制及观察内部的IC 信号。当SoC变得愈来愈复杂时,在设计週期中进行验证就变得格外重要且富挑战性。

         OFDM 设计工程人员整合了系统层级的模拟与验证设计流程,以便在模拟过程中对复杂的IC 设计进行生产前的初期验证,同时他们也将上述流程与生产流程和制造测试程序连接在一起。如此一来,设计工程师就可以在整个产品生命週期中使用设计智财元件(IP),以达到降低成本的目标。以下三个重要的策略,可以让新的OFDM 产品具备更高的可预测性和获利能力:
• 执行先期验证
• 整合设计、验证与制造测试
• 进行完美的RF 模拟

         当产品进入开发的最后阶段时,设计问题对财务与时程的影响将会愈来愈明显。后期的整合问题及RFIC 未能达到效能目标,是造成专案进度落后及成本超出预期的两个最常见的原因,但可藉由整合设计、模拟与测试工具和方法来解决。在开发IEEE 802.11 WLAN OFDM 产品的过程中,几个重要的成功因素包括:
• 使用OFDM 通信模型程式库来执行合乎标准的参考无线电模拟。
• 参考无线电的端对端模拟与验证,各个系统区块是在不同的时间开发而成的。
• 当每个设计小组将个别的IP 区块移到下一个开发阶段时,都会执行效能检查。
• 在模拟与实体仪器之间使用一致的量测与分析演算法。
• 不同据点及单位的设计与测试站,都使用相同的效能量测标准。
  



图1. OFDM 参考无线电。

继续阅读
超宽带(UWB)技术与接触者追踪应用入门

超宽带(UWB)作为一种无线技术,能够以前所未有的准确度实时测量位置和距离:它可在室内外精确地确定设备所在位置,精度达厘米级。

RF 技术在零售市场的四大机遇

全球冠状病毒危机正给零售业带来前所未有的压力。杂货店和药房等实体零售空间需要新的规程以确保客户和员工的安全。对面粉、鸡蛋和厕纸等特定产品的需求升高,使得商家难以维持货架上的存货;此外,送货上门的请求也在增加。这种“新常态”动摇了消费者的信心,全球性的消费者支出下滑便是明证。惠誉国际评级公司(Fitch Ratings)预测,仅在美国,可自由支配的零售支出将在 2020 年上半年下降 40% 至 50%。隔离措施和其它阻碍人员与货物自由流动的因素使这一情况进一步恶化。

室内无线定位技术UWB简介

随着无线通信技术的发展和数据处理能力的提高,基于位置的服务成为最有前途的互联网业务之一。

UWB技术详解

在信息社会,万物的位置信息发挥着至关重要的作用:厂房内每件产品的摆放位置、安保现场每个安保人员的位置、物流仓库里每一件产品的位置。。。在这个万物互联的时代,定位已经成了信息社会运转的核心要素。

小型化双陷波超宽带天线设计

 本文提出了一种新型小型化UWB微带缝隙天线。陷波特性是通过在馈线和辐射板上开两个U型缝隙,引入半波长谐振结构而获得的。通过电磁仿真软件HFSS11仿真计算,确定了天线的几何尺寸。在微波暗室中对天线实物样品的输入端反射特性、辐射方向图等进行测量。