基于DSP的256PPM调制设计

分享到:

引言

        FSO ( Free space optical)是指在两个或多个终端之间,利用在空间传输的激光束作 为信息载体实现通信,它包括深空、同步轨道、低轨道、中轨道卫星之间、地面与卫星之间 的激光通信,是一种无需光纤进行通信的光通信方式,结合了无线通信和光纤通信的优点, 是现代光纤通信技术的补充和拓展.具有频带宽,速率高,容量大,架设灵活便捷,适用于 任何通信协议,频谱资源丰富,传输保密性好,小型化等特点。其应用场合一个关键技术在 于光收发端机的研制。采用何种调制技术是其中最为核心的问题。同OOK等其他调制技术相 比,光PPM(Pulse Position Modulation)调制具有低的平均功率和较高的峰值功率,兼备安全隐蔽和信噪比高的特性,结合考虑其应用场合,PPM调制技术在FSO系统中被广泛采用。另 外PPM在水下通信、光弧子通信和光纤的长途或多用户通信中也有良好的应用前景,它的应 用具有重要的国防和商用意义。目前国内外对PPM调制技术已经有了比较深入的研究,国外 已经将该技术应用到实际系统中,并取得了性能良好的实验数据。而国内只有少数科研单位 从事这一领域的研究,在调制发射应用方面,以前用接口卡、单片机来实现,这些方法要么 结构复杂、要么调制速率跟不上,实用性差。随着高速数字信号处理器DSP的出现及广泛应 用,这些问题都可以解决。该文根据PPM调制信号的特点和DSP技术,提出了一种用DSP实现 256PPM调制的方案,包括硬件电路设计和软件设计,该方法简单实用,适合于任意时隙数和 任意脉冲宽度的PPM。

1.PPM调制信号

        PPM调制采用光脉冲作为载波,信源的信息控制脉冲的位置。PPM信号结构如图1所示。

        设计一个DSP最小系统外加用于程序存储的FLASH即可实现PPM的调制。DSP芯片采用 TMS320C5410,内部RAM空间较大 ,一般应用不需要外扩 RAM,工作时钟为100MHz,六级流水, 为通用高速低功耗数字信号处理芯片,外设(I/O)工作电压为3.3V,核工作电压为2.5V,地 为数字地。电源电路采用电源芯片TPS73HD325,典型输入电压为+5V,为VC5410提供+3.3V 和+2.5V电源输出,在TI网站上可查阅到TPS73HD325具体电路连接,同时也可提供复位。JTAG 口要注意接一些上拉电阻,以便能连接得上仿真器,还要注意DSP一些没用到的引脚也要接 上拉电阻。外接FLASH的作用是将PPM调制代码装入其中,脱离仿真器和PC,给系统单独上电, 也能实现PPM调制。FLASH采用SST39VF400,其使用方法可参考TI上有关SST39VF400的使用手 册。限于篇幅,这里不多做介绍。最后在DSP的XF脚接上一个LED作为调制信号的输出指示。

2.软件设计

        本系统设计为256PPM,发送一节信息,包括5个同步头,60个信息,信息值为65。激光 脉冲重复频率为50Hz ,要求相邻两脉冲间隔大于20ms ,这里设时隙间隔为40μ s ,保护时隙数设为512,符合要求。利用DSP定时器产生40μ s 的定时,这样可以得到准确的40μ s 脉 冲宽度。首先定义几个计数器。同步头间隔设为512,用t0计数;同步头个数设为5,用t1 计数;t2表示信息与保护时隙512相加的值;信息个数设为60,用t3表示。其软件流程图包 括主程序流程图和中断服务程序流程图。中断服务程序流程如图3所示。

        主程序流程图中包括初始化t0,t1,t3,定义t3个要发送的信息,设置定时中断40μ s , 开中断,等待中断。定时时间到,进入中断,执行中断服务程序。

3 试验结果

        用数字示波器观测到的256PPM 调制试验结果如图4 所示。每格代表10ms ,大约为256 个时隙宽度。图中,第一和第二条线为同步时隙,间隔512× 40μ s = 20.48ms ,大约为两 格,与理论想相符;后三条为信息时隙,都与前一条间隔相等,两格多,也与理论上信息时隙应出现的间隔(512 + 65)× 40μ s 一致。

结束语:

        在PPM信号结构的基础上,搭建了硬件实现平台,同时在CCS2.0环境下编程实现了调制, 试验结果与理论相符合,已成功用于笔者所从事的PPM调制与解调系统设计关于调制部分的 实现上。创新点:提出了一种用DSP实现256PPM调制的方案,包括硬件电路设计和软件设计,简单实用,适合于任意时隙数和任意脉冲宽度的PPM调制。

 

继续阅读
浅析雷达技术新应用

雷达技术的最新突破,结合军事和商业应用的小型化、经济型、高精度雷达需求,带来了雷达技术与应用的复兴。许多即将来临的技术增长领域,如无人驾驶汽车、无人机(UAV)和各种商用/民事应用,都取决于固态雷达和一些新的制造工艺与设计方法。这复兴是军用雷达、隐身和干扰技术升级发展淘汰传统雷达解决方案的产物。先进数字信号处理(DSP)、灵活射频收发器和尖端天线技术的广泛应用正在加速这种改变。

数字对讲机工作原理及数字对讲机关键器件的构成

本文讲述了六种数字对讲机工作原理及数字对讲机关键器件的构成。

DSP硬件设计的几个注意事项

数字信号处理芯片(DSP) 具有高性能的CPU(时钟性能超过100MHZ)和高速先进外围设备,通过CMOS处理技术,DSP芯片的功耗越来越低。这些巨大的进步增加了DSP电路板设计的复杂性,并且同简单的数字电路设计相比较,面临更多相似的问题。

谈GPU的作用、原理及与CPU、DSP的区别

GPU是显示卡的“心脏”,也就相当于CPU在电脑中的作用,它决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。2D显示芯片在处理3D图像和特效时主要依赖CPU的处理能力,称为“软加速”。3D显示芯片是将三维图像和特效处理功能集中在显示芯片内,也即所谓的“硬件加速”功能。显示芯片通常是显示卡上最大的芯片(也是引脚最多的)。GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作,尤其是在3D图形处理时。

TI高集成度SoC完胜FPGA?

在要求高速数据生成和采集的场合,性能是关键。例如航空电子、防御系统、医疗以及测试与测量等应用领域,对于性能、功耗、体积等有着更为严苛的要求。日前,德州仪器(TI)推出一款基于Keystone的高集成度66AK2L06 SoC解决方案,它集成了JESD204B接口标准,以及高整合度的数字前端,可使总体电路板封装尺寸减少66%,同时可帮助上述应用领域的产品能耗减少50%。