一种用于手持移动终端的可重构天线设计

分享到:

O 引言
目前,各种通信系统发展的重要方向之一是大容量、多功能、超宽带。通过提高系统容量、增加系统功能、扩展系统带宽,一方面可以满足日益膨胀的实际需求,另一方面也可以降低系统成本。而天线作为各种无线通信系统的前端,其性能对于通信系统整体功能具有重要的影响,因此也相应的对其提出了诸如多频、宽带、小型化等要求。随着无线通信系统的日益复杂化,单一的传统天线已经不能满足要求。而多天线设计虽然可以满足新一代无线通信系统对天线的高要求,但是,天线数目的增多,会使设备成本、天线的空间布局等问题凸显出来。特别是在手持移动设备上,由于空间有限,使得多天线的设计异常困难。在这种情况下,可重构天线就具有非常明显的优势。它可在不改变天线的尺寸和结构的情况下在天线的方向图、工作频率、极化特性等方面实现重构,从而使一个天线能够实现多个天线的功能,适应移动终端不同的应用环境和要求。
在天线的方向图可重构方面,目前的研究主要集中在采用八木形式的结构上。即通过开关控制来改变反射器或引向器的有效谐振长度,从而实现反射或者引向作用,使天线的辐射方向发生变化。但是,这种方式需要多个天线。故在手持终端有限的空间下,采用这种方式有很大的困难。另外,在天线极化方式可重构方面,研究的重点也是单贴片的天线,即通过在天线上开槽或者采用多条馈线,并在不同位置安装开关来改变开关的状态从而实现极化方式的变化,但是,这种天线的面积较大,同时采用多条馈线的结构太复杂,都不适用于实际的移动设备。
本文提出了一种用于手持移动设备的可重构天线.该天线在适当位置安装了RF-PIN开关,可通过直流控制电路控制开关的通断,以使天线以两种正交的线极化方式工作,同时也使天线的方向图发生变化,从而实现极化方式和方向图的重构。该天线结构紧凑,面积小,易于制造,并具有在同一终端安装多个天线来实现 MIMO(多输入多输出系统)的潜力,故在移动终端中有良好的应用价值。

1 天线结构与设计
天线可以与手持设备电路板集成在一起,安装在电路板的左上角,其结构和RF-PIN开关控制电路示意图如图1所示。

通常的天线版图位于介质基片的底面,控制电路位于基片的顶面,图l中的D1、D2为两个RF-PIN开关;Cl、C2为旁路电容,对高频信号短路;L1、 L2为电感,对高频信号开路。二极管和电容通过通孔与底面的天线连接。该天线基片采用厚度为0.8 mm,介电常数为4.4的FR4材料。水平与垂直的两个微带结构通过RF-PIN开关与电路板地相连,中间的微带为馈线,并通过同轴电缆直接馈电。微带天线的谐振频率主要取决于微带线的长度,在一般情况下,在介电常数为εeff的基片上,微带线的波导波长约为:

由于两种工作状态下,天线的接地端不同,因此,天线的有效辐射部分也有所不同。当处于X模式时,天线结构中垂直部分的微带线接地,因此,天线的辐射部分应该为水平部分的微带,天线也相应工作在水平极化方式。图3所示为天线在2.44 GHz时的射频电流分布图。
从图3可以看出,射频电流主要集中在天线水平方向的微带线上(这印证了前面的分析)。但同时,在中间部分的微带以及天线其他部分也存
在射频电流,因此,天线仍会辐射部分垂直极化波。图4所示为天线的两种极化波在XY及YZ平面的方向图。

图4中,Theta表示水平极化方波,Phi表示垂直极化波,从图中可以看出,在XY平面上,水平极化波的平均增益比垂直极化波高35 dB以上,而在YZ平面上,水平极化波具有良好的全向性,且平均增益比垂直极化波高约10 dB,因此可以判断,水平极化波能量远大于垂直极化波能量,天线工作在水平极化方式下。

当处于Y模式下时,天线结构中水平部分的微带线接地,因此,垂直部分的微带线是天线的有效辐射体,此时天线也相应工作在垂直极化方式下。图3(b)所示为模式Y下天线在2.4 GHz的射频电流分布图,从图中可以看出,此时的射频电流主要集中在天线垂直方向的微带线上,天线此时工作在垂直极化方式下。图5所示为该模式下天线两种极化波在XY和YZ平面的方向图。
从图5中可以看出,在XY平面上,垂直极化波的最大增益比水平极化波高37 dBi,同时在YZ平面上,垂直极化波也有良好的全向性。其最大增益比水平极化波高12 dB,说明在该模式下,天线可良好地辐射垂直极化波,而交叉极化分量很低。

事实上,在两种工作模式下,天线的总体方向图会发生显著变化。在YZ和XZ两个平面上。天线方向图具有良好的全向性,能尽可能的接受各个方向的来波信号; 而在XY平面上,天线在两种状态下的方向图显著不同,最大辐射方向会发生明显改变,并且在这个辐射平面上可以实现良好的互补。故在实际应用中,应根据信号 波的方向和强度的不同,来实时改变天线状态,调整方向图的最大辐射方向,以有效地提高天线信号的信噪比,提高通信速率和系统容量。3 结束语
    本文提出了一种用于手持移动设备的可重构天线的设计方法,该天线安装了两个RF-PIN开关,可通过一个直流控制电路来控制开关的通断,以使天线工作在垂 直极化或水平极化方式,同时也使天线方向图发生变化,从而实现极化方式和方向图的同时重构。仿真结果表明,在两种状态下,该天线的-10 dB带宽均可达到240 MHz。而且通过开关状态的切换,还可以使天线在水平和垂直线极化方式之间切换,并使天线辐射方向图的主瓣方向也偏转150°。该天线结构紧凑,面积小, 易于制造,可用于移动终端的多天线系统,因此在移动通信系统中有良好的应用价值。

继续阅读
时域技术在天线测量中的应用

天线测试技术发展到目前,其测量方法已经涉及到频域、时域、空域及数字域。但常用的测量方法仍然以频域为主,而频域测试的指标只是得到该指标对应于频率的综合响应,而无法分析和区分其他因素如接头,传输线,馈电点,测试场环境反射对其影响和干扰程度,也难以去除这些影响测试准确度的干扰。

手持移动终端的可重构天线的设计

本文介绍了一种可用于手持移动终端的可重构天线的设计方法。该天线结构紧凑,易于与电路板集成在一起,在移动终端中有良好的应用价值。

WLAN双频PCB印刷天线设计

文中设计了一种WIAN双频偶极子印刷天线,通过对双频印刷天线的仿真、优化,实现了WLAN标准的工作频段,方向图有一定的指向性,适用于对波束指向有一定要求的应用。该天线尺寸小,便于集成;性能好,满足无线局域网通信应用的要求。

改进杠铃形超宽带天线

 超宽带(UWB)技术作为一种无线通信技术,在短距离室内高速无线通信方面也受到人们越来越多的关注。根据FCC规定,将3.1~10.6 GHz之间的7.5 GHz频段分配给超宽带通信业务使用。

高性能的微带全向天线设计

文献给出了一种改进的方案,将微带天线的地面做成梯形结构,如图2所示。这在一定程度上改善了天线性能。文中给出了该结构天线的仿真和实物测试结果,以便与本文提出的微带全向天线作比较。文中所提出的微带全向天线如图3所示。该天线除了采用微带渐变结构和电感匹配器外,还在天线的顶端加载了λg/4短路匹配枝节。仿真和测试表明,该天线同文献中提出的天线相比较,具有更好的电压驻波比和更高的增益,是一种高性能的微带全向天线。