S参数在射频电路中应用问题

分享到:

 S参数在射频电路中应用广泛,在射频电路中的地位,应该与低频中的电压电流定律一样重要。整个S参数的得出过程由下图可见:

  

 

  S11 = forward reflection coefficient (input match)

  S22 = reverse reflection coefficient (output match)

  S21 = forward transmission coefficient (gain or loss)

  S12 = reverse transmission coefficient (isolation)

  个人认为S12被称为隔离度有点不妥,应该是在多端口,比如3端口的,1、2端口为输入,3为输出的情况下,S12和S21可以被形容为隔离度。

  阻抗匹配的过程当中,可以是从ZL匹配到Zo的共轭,也可以是从Zo匹配到ZL的共轭。两者是相同的过程。

  

问题点:

  ADS的仿真过程中,S11参数表示的具体含义是什么,比如Zo为80欧姆,经过阻抗匹配网络后,也实现了S11参数的最小化。而此时通过SMITH圆图可以得到,Zo为50欧姆附近,要如何解释?所谓系统的S11和网络的本征S11分别是什么概念?

  当一个网络为无源网络时,S12=S21时,可以称做互易网络,我猜想互易网络的意思就是,激励源方向相反时,传输损耗不变。在进行ADS仿真的过程中,经常出现的情况会是S11参数不错,同时S21参数也可以,而S22参数很差,此时S12与S21曲线相同,怎么解释这个问题?互易网络的物理意义是什么?S12=S21代表什么?一个阻抗匹配网络是否好,是S11重要,还是S22重要?

  

 

  对于网络分析仪,ADS当中的VNA可以任意地更改源及负载阻抗,那么实际中可以更改吗?用网络分析仪测试一个特征阻抗不是50欧姆的端口,应该怎么测试?直接读出S11参数的史密斯圆图,然后获得特性阻抗?测试一个阻抗匹配网络的S21,两端都不是50欧姆,怎么测试?测试的S22参数是否可以看作是端口2的输出阻抗?

  

 

  回忆在安捷伦测试时,斌总说可以将天线先断开,假设天线阻抗为50欧姆,就可以用端口1进行S11测量,然后得出整个阻抗匹配网络,包括IC输出阻抗在内的特性阻抗。那么假设可以将VNA的输出端阻抗设置为80+74*j,是不是代表,此时通过4端口网络的双端输出接匹配网络的双端输入,利用S11参数可以得到80+74*j的特性阻抗?如果是这样的话,ADS仿真中的S22就应当可以得出80+74*j。问题是,实际的仿真结果,并不是该值。

  
 

 

  

继续阅读
在PCB设计中,射频电路和数字电路如何和谐共处?

单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。

教你如何在射频电路电源设计中,精准踩雷!

良好的电源去耦技术与严谨的PCB布局、Vcc引线(星型拓扑)相结合,能够为任何RF系统设计奠定稳固的基础。尽管实际设计中还会存在降低系统性能指标的其它因素,但是,拥有一个“无噪声”的电源是优化系统性能的基本要素。

射频电路的电源设计要点

电源线是EMI 出入电路的重要途径。通过电源线,外界的干扰可以传入内部电路,影响RF电路指标。为了减少电磁辐射和耦合,要求DC-DC模块的一次侧、二次侧、负载侧环路面积最小。电源电路不管形式有多复杂,其大电流环路都要尽可能小。电源线和地线总是要很近放置

射频电路的电源应该如何设计?

良好的电源去耦技术与严谨的PCB布局、Vcc引线(星型拓扑)相结合,能够为任何RF系统设计奠定稳固的基础。尽管实际设计中还会存在降低系统性能指标的其它因素,但是,拥有一个“无噪声”的电源是优化系统性能的基本要素.

史密斯圆图的球面表示法

在哥伦比亚(Christopher Columbus)航行前,所有人都认为地球是平的… 。在过去的许多年中,我将传统的史密斯圆图进行扩展来帮助我理解射频领域中像振荡器设计以及放大器的稳定性这类涉及到负阻抗器件的问题。