使用MDO4000进行RF模块功能验证及调试

分享到:

 信号干扰问题一直困扰着工程师,其已经成为电路设计工程师不可避免的问题。串扰是指有害信号从一个网络转移到另一个网络,它是信号完整性问题中一个重要问题,在数字设计中普遍存在,有可能出现在芯片、PCB板、连接器、电源和连接器电缆等器件上。如果串扰超过一定的限度就会降低系统的噪声容限,增加系统错误的机会,严重的导致无法正常工作。因此查找信号干扰成为解决系统问题的第一道门槛,泰克MDO混合域示波器可以很好的解决这个问题。算机联锁、列车运行自动控制、编组站自动化、通信、光学、雷电及干扰防护和城市轨道交通7 个专业事业部。拥有防雷、光学和无线通信三个全路中心试验室、十多个专业试验室和环行铁道通信信号系统综合试验基地,主要从事雷电干扰防护和城市轨道交通安全的研究。

  客户研发方向为智能家居产品,使用无线传输数据,其中RF模块外购。要验证射频模块的功能和指标,以及联合调试在实际工作中的问题。射频模块于系统之间采用SPI总线连接,使用物联网的自动组网模式传输数据。

  客户要解决一系列的问题,比如测试信号发射功率、SPI总线解码以及射频信号和数字信号的联合调试、接收灵敏度、查找干扰源等。这次主要解决使用单片机连接RF模块传输距离满足要求,换上FPGA却发现传输距离变短的问题。

  问题描述

  用单片机连接RF射频模块,之间的数据连接采用SPI总线连接,单片机的时钟频率为十几兆赫兹一切很正常,和预计的无线传输距离接近。之后想实现复杂的功能把单片机方案换成了FPGA方案却发现传输距离明显变短了。使用MDO的解码功能确定了基带信号的传输和接收都没有问题。

  

  图1:SPI总线波形超调超过34%

  图中的数字信号虽然超调比较大(34%)但是波形完整,解码信息正确。所以数字信号得过冲并没有影响系统的发射距离。

  故障查找及修改方案

  FPGA的运行频率为400MHz,这和射频的发射频率433MHZ接近。是否是因为FPGA的主频干扰了射频的发射呢?但是之后的测试并未发现433MHZ的关键干扰信号存在,那是否是因为电源容量太小引起的呢?我们进行了进一步的测量。因为单片机使用锂电池供电,FPGA使用板上电源供电。MDO混合域示波器测试结果显示了差别所在。

  

  图2:板上供电FPGA驱动的射频信号

  

  图3:电池供电的单片机驱动的射频信号

  从图中可见在板上供电FPGA驱动的射频信号输出的频率周围出现的不该出现的寄生干扰(图2),而电池供电的单片机驱动的射频信号却很干净(图3)。而输出功率都在-15dBm左右,相差不大!

  从新设计电源部分,把连接线换成屏蔽线并单端接地,问题得以解决。

  结论

  MDO混合域示波器融合了时域、频域、逻辑域和调制域的调试功能,完美的解决了工程师基带和射频联合调试的问题!

  本次测试结果显示在射频信号中存在干扰。图2显示了FPGA驱动的射频信号的的波形,图3显示了使用单片机驱动的射频信号的波形。两者的信号强度一致但是接收距离有明显的差异,干扰导致了噪声容限的降低影响接收灵敏度, 电源对系统的干扰确确实实的存在。
 

继续阅读
如何用好示波器?首先你得认识!

自然界存在着各种形式的波,比如海浪、地震、声波、爆破、空气中传播的声音,或者身体运转的自然节律。物理世界里,能量、振动粒子和不可见的力无处不在。 即使是光(波粒二象物质)也有自己的频率,并因为频率的不同呈现出不同的颜色。

射频信号如何用示波器测量?

有些工程师朋友联系我说,除了数字工程师要用到射频仪器外,有些射频工程师也会用到示波器做射频信号测试,但是不清楚精度如何,以及和频谱仪等传统仪器的区别,希望能对这方面做些讲解,为此,我对示波器做射频信号测试的应用案例和注意事项做了一些整理,将陆续连载,希望能给大家提供一些帮助。

三种信号完整性测试方法一览

信号完整性的测试手段主要可以分为三大类,下面对这些手段进行一些说明。

频谱分析仪六问六答

逻辑分析仪是利用时钟从测试设备上采集和显示数字信号的仪器,最主要的作用在于时序判定。逻辑分析仪与示波器不同,它不能显示连续的模拟量波形,而只显示高低两种电平状态(逻辑1和0)。

如何使用示波器测量EMI干扰

在抗干扰测试中,示波器阵列是用于验证传感器输出是否符合要求的潜在的最具性价比的方法,因为大部分功能可以使用示波器中已经具有的pass/fail模板和参数限值测试功能完成,相对于花费成本自己开发数据采集软件执行同样严格的EMI偏离测试,EMC工程师可以节省下大量的时间和精力。