利用EDA仿真软件设计超宽带双鞭天线

分享到:

天线作为通信设备的前端部件,对通信质量起着至关重要的作用。随着现代军事通信系统中跳频、扩频等技术的应用,寻求天线的宽频带、全向性、小型化、共用化成为天线研究中一个重要课题。
单纯依靠天线的结构设计难以满足上述要求。人们采用多种措施来改善天线的性能,加载就是适应这种小型化天线的典型技术。使用天线宽带匹配网络,则是进一步改善天线宽频带技术的一种有效技术。
本文以120~520 MHz工作频率为例,根据限定的天线结构数据,选择合适的加载位置,利用软件优化,得到了合理的加载值和优化的匹配网络。
1 天线及匹配网络模型
天线的模型如图1所示,加载方式采用无耗并联LC电路。匹配网络位于天线底部,采用混合型网络,如图2所示。


2 天线及匹配网络分析
2.1 天线的加载位置
天线为集总加载的双鞭天线,模型是建立在理想导电地面上。加载的目的就是使天线获得行波电流,减少反射。此时的加载就是最佳加载。这里讨论的是无耗加载,电抗加载最佳加载位置与电抗的关系式为:


2.2 匹配网络分析
天线的输入阻抗zin可由电流分布得到,从馈线端看过去,整个系统的输入阻抗为:
3 EDA软件优化设计
天线相关参数的优化设计采用CST软件。根据实际要求,我们的优化参量包括加载位置h,天线间距d。由优化得到的数据,设计天线实际模型。测试得到阻抗数据导入ADS软件中,作为匹配网络参数优化的依据。匹配网络的结构不作为优化变量。优化参数包括匹配网络元器件值。
4 计算结果与分析
考虑到实际要求的天线频带宽,从几十MHz到几百MHz,因此天线的结构尺寸为:h1=150 cm,h2=30 cm,r=1 cm,经过软件优化的天线加载位置为:h3=24.5 cm,天线间距d=58.9 cm。按照此数据制作实物模型,将测试数据导入ADS软件中,优化得到的元器件值如表1所示。


根据优化的数据,在未接入匹配网络的情况下,得到的驻波比如图3所示。通过图形发现,大部分驻波比都在2以上,因此,必须通过接入匹配网络来改善。


图4是接入匹配网络后的驻波比。从图4中可得知,驻波比已经很好地控制在2以下。


图5为匹配网络效率与工作频率的关系。
从上述系列图中可以看出,匹配网络的加入,使得天线在120~520 MHz内具有良好的宽带性能,端口驻波比均在2.0以下,同时也由于匹配网络的引入,特别是电阻R1的加入,使得天线的增益受到影响。但通过EDA软件的优化,在保持带宽的同时,尽量提高匹配网络的工作效率,使得在这一频带内,匹配网络的工作效率基本都达到了70%以上。
5 结语
在此介绍了一种短波超宽带双鞭天线,为了在频带内得到较好的驻波比和增益,设计了合理的匹配网络。利用EDA仿真软件优化工具,优化了天线加载位置,匹配网络元器件值等参量,得到了较好的结果。

继续阅读
先进半导体工艺遭遇战 如何应对?

如果说摩尔定律预言了前50年的半导体工艺技术发展路线,那么近两年以来半导体工艺可谓被智能手机等智能终端设备的军备竞赛疯狂驱动着向前。从28nm到22nm、14nm、10nm甚至7nm,在先进半导体工艺激烈竞争下,对数字电路越来越高的性能要求使半导体供应商面临着更多的挑战。

经验总结:FPGA时序约束的6种方法

对自己的设计的实现方式越了解,对自己的设计的时序要求越了解,对目标器件的资源分布和结构越了解,对EDA工具执行约束的效果越了解,那么对设计的时序约束目标就会越清晰,相应地,设计的时序收敛过程就会更可控。

PCB设计时的6个常见错误

让我们面对现实吧。人都会犯错,PCB设计工程师自然也不例外。与一般大众的认知相反,只要我们能从这些错误中学到教训,犯错也不是一件坏事。下面将简单地归纳出在进行PCB设计时的一些常见错误。

通过EDA设计工具了解FPGA的设计流程

对于初学者而言,FPGA的设计流程是否显的"又臭又长"呢?呵呵,如果真的有这样的感觉,没有关系,下面我就通过对软件的使用来了解FPGA的设计流程。

是德科技公司日前发布KeysightEEsof EDA5G 基带模型库,能够为5G技术研究提供可立即使用的参考信号处理用

是德科技公司日前发布KeysightEEsof EDA5G 基带模型库,能够为5G技术研究提供可立即使用的参考信号处理用户专利(IP)设计。借助业界首个5G模型库,系统构架和基带物理层(PHY)设计人员可以大幅提升工作效率。 20141031104848358