高速电路设计中耦合电容的重要性

分享到:

相对于低频电路需要做复杂的电路匹配,高频电路结构相对简单,可简单的结构往往意味着需要考虑更多的问题。拿最常见的AC耦合电容来讲,要么在芯片之间加两颗直连,要么在芯片与连接器之间加两颗。看似简单,但一切都因为高速而不同。高速使这颗电容变得不“理想”,这颗电容没有设计好,可能会导致整个项目的失败。因此,对高速电路而言,这颗AC耦合电容没有优化好将是“致命”的。

 

下面笔者依据之前的项目经验,盘点分析一下我在这颗电容的使用上遇到的一些问题。

 

最开始要先明白AC耦合电容的作用。一般来讲,我们用AC耦合电容来提供直流偏压,就是滤出信号的直流分量,使信号关于0轴对称。既然是这个作用,那么这颗电容是不是可以放在通道的任何位置呢?这就是笔者最初做高频电路时,在这颗电容使用上遇到的第一个问题——AC耦合电容到底该放在哪。

 

这里拿一个项目中常遇到典型的通路来分析。

 

1

图1:AC耦合电容典型通路

 

在低速电路设计中,这颗电容可以等效成理想电容。而在高频电路中,由于寄生电感的存在以及板材造成的阻抗不连续性,实际上这颗电容不能看作是理想电容。这里信号频率2.5G,通道长度4000mil,AC耦合电容的位置分别在距离发送端和接收端200mil的位置。我们看一下仿真出的眼图的变化。

 

1472813791795076729th

图2:AC耦合电容靠近发送端的眼图

 

1472813818928045686th

图3:AC耦合电容靠近接收端的眼图

 

显然,这颗AC耦合电容靠近接收端的时候信号的完整性要好于放在发送端。我的理解是这样的,非理想电容器阻抗不连续,信号经过通道衰减后反射的能量会小于直接反射的能量,所以绝大多数串行链路要求这颗AC耦合电容放在接收端。但也有例外,笔者之前做板对板连接时遇到过这个问题,查PCIE规范发现如果是两个板通常放置在发送端上,此时还利用到了AC耦合电容的另外一个作用——过压保护。比如说SATA,所以通常要求靠近连接器放置。

 

解决了放置的问题,另一个困扰大家的就是容值的选取了。这样说,我们的整个串行链路等效出的电阻R是固定的,那么AC耦合电容C的选取将会关系到时间常数(RC),RC越大,过的直流分量越大,直流压降越低。既然这样,AC耦合电容可以无限增大吗?显然是不行的。

 

1472813878363054125th

图4:AC耦合电容增大后测量到的眼图

 

同样的位置,与图3相比可以看出增大耦合电容后,眼高变低。原因是“高速”使电容变的不理想。感应电感会产生串联谐振,容值越大,谐振频率越低,AC耦合电容在低频情况下呈感性,因此高频分量衰减增大,眼高变小,上升沿变缓,相应的JITTER也会增大。通常建议AC耦合电容在0.01uf~0.2uf之间,项目中0.1uf比较常见。推荐使用0402的封装。

 

最后,解决了以上两个问题,再从PCB设计上分析一下这颗电容的优化设计。实际在项目中,与AC耦合电容的位置、容值大小这些可见因素相比,更加难以捉摸的是板材本身(包括焊盘的精度、铜箔的均匀度等)以及焊盘处的寄生电容对信号完整性的影响。我们知道,高频信号必须沿着有均匀特征阻抗的路径传播,如果遇到阻抗失配或者不连续的情况时,部分信号会被反射回发射端,造成信号的衰减,影响信号的完整性。项目中,这种情况通常会出现在焊盘或者是板载连接器处。笔者最初涉及的高速电路设计时,经常遇到这个问题。

 

解决这个问题要从两个方面入手。首先在板材的选取上,我们在应用中通常选用高性能的ROGERS板材,罗杰斯的板材在铜箔厚度的控制上非常精确,均匀的铜箔覆盖大大降低了阻抗的不连续性;然后在消除焊盘处的寄生电容上,业内常见的办法是在焊盘处做隔层处理(挖空位于焊盘正下方的参考平面区域,在内层创建铜填充),通过增大焊盘与其参考平面(或者是返回路径)之间的距离,减小电容的不连续性。在笔者的项目中多采用介质均匀、铜箔宽度控制精确的ROGERS板材也有效提高了焊盘的加工精度。

 

通过仿真对比一下ROGERS板材做精确隔层处理前后的信号完整性。

 

1472813896140087413th
图5:做隔层处理前的TDR

 

1472813924037062364th

图6:做隔层处理后的TDR

 

图5图6对比,发现未处理之前阻抗的跳跃很明显,隔层处理后的阻抗改善很多,几乎没有任何阶跃与不连续。

 

1472813943067001060th

图7:做隔层处理前的回波损耗

 

1472813957268036395th
图8:做隔层处理后的回波损耗

 

图7图8对比,在用ROGERS板材做隔层处理之后,相比未做隔层处理回波损耗下降到-30dB之内,大大降低了回波损耗,保证了信号传输的完整。

 

综上,想要搞定高频电路中这颗“致命”的AC耦合电容,不仅要做足电路设计上的功课,同时,选择性能更好的高频PCB板材料会让你事半功倍。

 

继续阅读
汽车连接器多种高性能铜合金带的性能

随着汽车对汽车连接器的要求越来越苛刻,在设计汽车连接器时,必须要考量材料性能、设计参数、工作环境和产品性能在整个产品生命周期中的相互关联、 相互影响,从而取的设计的平衡点。因此,在设计选用 铜及铜合金带阶段,要根据汽车连接器的设计要求,同时结合铜及铜合金带的性能,选择合适的铜及铜合金带。本文根据汽车连接器对铜及铜合金铜带性能要求,建议了适合汽车连接器各项性能要求的高性能铜合金。

如何优化军事应用射频连接器的选择与实现

射频同轴连接器和电缆是常见的元器件,在军事应用中发挥着基本不可见但非常关键的作用。该组件的工作是将频率高达数十千兆赫 (GHz) 的射频信号从天线传送到接收器。它必须可靠地处理敏感的射频信号并保持其完整性,同时要足够坚固,能够经受住战场上的严酷考验。

浅析新能源汽车高压连接器振动等问题

近年来我国乃至世界各地对于新能源汽车的研究从未间断,要实现以新能源汽车代替传统汽车的目标,不仅要从汽车自身制造技术和性能方面加以完善,还要解决阻碍新能源汽车发展的重重阻碍。本文主要针对新能源汽车连接器在车辆振动下的几个比较重要的问题,即高压互锁瞬断的问题、接触区域ECR变化以及微动磨损的影响程度、连接器怎么降低以及吸收来车辆的振动。

射频同轴连接器的设计要点

射频同轴连接器一般来讲,内部结构设计得越复杂,过渡台阶越多,电性能传输越不好。所以连接器内部结构只要满足必须的支撑,结构以简单为好。连接器设计需要遵循:连接器与所连接电缆的特性阻抗必须一致、介质支撑的设计与共面补偿、连接器内、外导体大尺寸向小尺寸过渡问题等原则。

同轴电缆和连接器的RF特性分析算法

同轴电缆和连接器是RF电路学习过程中的重要一环,在射频微波领域有极为广泛的应用。今天给大家总结相关的常用基础指标的分析和定义方法,包括同轴特性阻抗、分布阻抗、相速和群速、传输截止频率、传输损耗、同轴电缆功率容量。