金属外壳EMI屏蔽有何妙招?

分享到:

1、屏蔽的商业必要性

 

笔者提出的一个重要概念:

 

一个项目在计划阶段就要考虑屏蔽问题,这样花费在屏蔽措施上的成本才会最低。

 

若等到问题暴露出来再去查漏补缺,往往需要付出相当大的代价。

 

屏蔽措施往往带来费用和仪器重量的增加,若能以其他EMC方式加以解决,就尽量减少屏蔽。(言下之意屏蔽是最后一招)

 

对于PCB应注意以下两点:

 

1、使导线及元器件尽量靠近一块大的金属板(这个金属板不是指屏蔽体)

2、使电气部件及线路尽量靠近地层(减少层间信号的电磁干扰、地层可以吸收部分干扰 )这样,即使是需要加屏蔽,也可以降低对屏蔽效能(SE shiedling effectiveness)的需求。

 

2、屏蔽的概念

 

屏蔽相当于一个滤波器,放置于电磁波的传播路径上,对其中的一部分频段形成高阻抗。阻抗比越大,屏蔽效能越好。

 

对于一般金属,0.5mm的厚度就能对1MHz的电磁波产生较好的屏蔽效果,对100MHz能有非常好的屏蔽效果,问题在于薄层金属屏蔽对1MHz以下或孔隙来说,屏蔽效果就不行了,本文重点介绍这方面。

 

3、大的间距、矩形屏蔽会更好

 

(1) 电路之间、屏蔽之间更大的间距能够减少相互干扰;

(2) 矩形(或不规则)的屏蔽外形,能够尽量避免频率共振;正方形的外壳往往容易引起共振;

 

但总的来说,电路板一般位于屏蔽体内,其元器件、线路等都会改变预期的共振频率点,所以不必太操心。

 

4、趋肤效应

2

趋肤深度

工程上定义从表面到电流密度下降到表面电流密度的0.368(即1/e)的厚度为趋肤深度或穿透深度Δ:

3

式中:

 

μ-导线材料的磁导率;

γ=1/ρ-材料的电导率;

k-材料电导率(或电阻率)温度系数;

4

 

上图:不同频率下三种金属的趋肤效应深度(频率越高,深度越浅,越趋肤);趋肤效应以传导的角度看,是希望趋肤深度深的,那表示导线的利用率高;但是对于屏蔽,是希望趋肤深度浅的,这样就能以较薄的金属屏蔽更多的电磁频段;50Hz的趋肤深度5~15mm,很难屏蔽……

 

用于屏蔽的金属应有良好的导电及导磁性能,厚度根据干扰的最低频率所产生的趋肤深度来定。一般1mm的低碳钢板或者1μm的镀锌层就能满足一般的应用。(这也是实际中常看到机箱壁上镀锌的原因)

 

5、孔隙

 

如果屏蔽体的整个壳体是无缝无孔的,那么对于30MHz的电磁波来说,要达到100dB的衰减效果不是难事。问题就在于他们不是无缝无孔的:

 

5

在一个完美的屏蔽壳体上开一个洞,相当于构成一个半波共振缝隙天线,屏蔽效能SE与孔的最大尺寸d、电磁波波长λ关系如下:

 

6

 

那么对于之前提到的30MHz,波长10m,假设有一个USB口(孔径对角线尺寸10mm),换算下来SE为54dB,d越大,SE越小。

 

我们常用到的电磁波频段:

7

我们在常规应用中制造出的干扰及谐波频段:

8

孔隙、平率与屏蔽效能的大致关系:

9

要达到40dB的SE,通常需要用导体垫圈、弹簧夹指来进行密封,注意内部元件与屏蔽罩的间距、数据总线与开孔和缝隙之间的距离。

 

还要注意,当屏蔽体中有电流,且电流的前进方向上有孔缝挡路,迫使电流绕行时,将引起孔缝类似天线而发射磁场,通过孔缝变化的电压产生磁场。

 

6、低频磁场的屏蔽

 

采用高磁导率的合金材料(如非晶合金、坡莫合金),按一定规格制成屏蔽罩,可大幅度减小磁场影响。

 

7、截至波导

 

10

8、垫圈

 

采用良导体,用于填缝,能承受一定的挤压变形,抗腐蚀、经久耐用.

11

12

9、可视组件的屏蔽

13

10、通风孔的屏蔽

 

将通风孔做成两种形式:

 

(1)金属网格(类似蜂窝铝板)

(2) (截至)波导

 

11、用喷漆或电镀的塑料

 

因为开模塑料美观轻便,所以时常使用,对这种情况,一般在塑料杯面喷涂导电材料,因为导电层厚度不可能太厚(微米级),实际效果不怎么样。

 

对于二类电器(class II),还可能增加静电放电(ESD)的可能性。

 

二类电器:这类电器采用双重绝缘或加强绝缘,没有接地要求。

 

12、非金属屏蔽

 

如碳纤维或导电聚合物(导电塑料),但是无论如何其SE都不及金属的好。

 

13、屏蔽罩的安装

14

 

14、板级屏蔽

 

15

 

 

继续阅读
5G与毫米波有何差异?它们分别为PCB带来哪些变化?

在华为研发出高速、大容量的下一代通信标准“ 5G”以来,随着兼容 5G 的智能手机发售,它开始真正走进我们的生活。这一次,我要介绍的,是 5G 高频和毫米波之间的差异,和 5G 行业中 PCB 的变化方式以及用于各种用途的 PCB 的类型。

5G时代带动陶瓷PCB成长 --- GPS陶瓷天线调试方法

5G时代下,信号基站将会变得更密集,数量达到4G的100倍,包括终端接收装置的迭代升级同时带来的一系列的软硬件升级。陶瓷PCB作为当下或者近一世纪高频介质损耗最低的电路板,成为5G的掌上明珠是必然的,发展空间之大毋容置疑。

射频集成电路与数字电路之间的联系

单片射频器件大大方便了一定范围内无线通信领域的应用,采用合适的微控制器和天线并结合此收发器件即可构成完整的无线通信链路。它们可以集成在一块很小的电路板上,应用于无线数字音频、数字视频数据传输系统,无线遥控和遥测系统,无线数据采集系统,无线网络以及无线安全防范系统等众多领域。

毫米波多通道收发电路与和差网络高密度集成技术

相控阵天线的收发组件与和差网络通常是两个独立的模块,模块间通过接插件进行电连接,成本较高且集成度低。文中提出了毫米波多通道收发电路与和差网络一体化集成技术,将多通道收发组件与和差网络高密度集成在同一介质基板(PCB)上,芯片贴装界面与和差网络在不同层,射频和低频电路通过介质板层间和层内走线完成。最后制作 8×16 阵列进行无源测试验证,结果表明该一体化集成技术性能良好,具有小型化、轻量化、一体化高密度集成、制作成本低等特点,可广泛用于毫米波瓦式相控阵天线。

5G建设带动产业链发展 PCB板块率先受益

5G逐步进入建设阶段,产业成熟度逐渐提升,带动上游产业景气度提升。 一方面,5G手机在今年三季度逐步面世,产业链对后期投资乐观,产业巨头看好5G前景上调年度资本开支。另一方面,随着5G网络设备加速推进,设备端对于上游射频器件、PCB等集采在上半年已经陆续展开,也已经部分反映到相关公司中期业绩报表中,A股沪电股份、深南电路、生益科技等多股上半年业绩亮眼。 5G产业预期和行业高景气度推动相关产业链公司股价不断攀高。7月25日,生益科技、深南电路、沪电股份、鹏鼎控股均创下历史新高。