如何用电磁分析优化螺旋天线

分享到:

缝隙螺旋天线拥有多功能性和宽带频率响应特性,因此被广泛用于无线通信、传感、定位、跟踪及许多不同微波频段的应用。为了优化缝隙螺旋天线的设计,工程师们可以利用电磁分析来精确计算诸如S 参数和远场模式之类的特性。

缝隙螺旋天线的优点

缝隙螺旋天线拥有以下优点:

· 近乎理想的圆偏振辐射
· 宽带频率响应
· 辐射方向图和阻抗能够在大带宽范围内保持不变

此外,缝隙螺旋天线设计易共形,可安装在各种物体上。这对于国防等工业是一个实用特征,安装在军用车辆和飞机的缝隙螺旋天线可以发挥通信和监视功能。

20180815044227472

螺旋天线实例。图片由Bin im Garten 拍摄,已获CC BY-SA 3.0 授权,通过Wikimedia Commons共享。

螺旋天线有很多种,最常见的是阿基米德螺旋天线。在本文,我们将讨论利用COMSOL Multiphysics® 软件及其附加的“RF 模块”对此类天线进行模拟。

借助COMSOL Multiphysics® 评估缝隙螺旋天线的设计

作为第一步,我们将讨论如何绘制由两条阿基米德螺旋线状狭缝构成的缝隙螺旋天线的几何。我们采用参数化曲线,在单面的金属基底上制作出一个螺旋图案。参数化曲线使得我们能够利用数学公式绘制任意形状的曲线。基底是一个完美电导体(perfect electric conductor,简称PEC),具有很高的导电性,表面的损耗可忽略不计。螺旋狭缝的中心是集总端口,作用是激励天线。

20180815044726190

20180815044735923

缝隙螺旋天线的几何结构(上图)和网格(下图)

天线和基底被空气区域和完美匹配层(perfectly matched layer,简称PML)包围,PML 为上图灰色部分。右图的物理场控制的网格由软件默认生成。根据频域 研究步骤定义的最大频率,最大的网格尺寸被设为0.2 波长。网格还会通过一些材料属性进行自动缩放,比如介电基底内部的介电常数和磁导率。PML 层采用扫掠网格,沿着径向包含5个网格单元。

查看电磁仿真结果

第一个绘图展示了天线顶面的电场模。该图表明沿缝隙的电场要强于天线表面其余地方的电场,这证实了电场被有效限制在带缝隙的基底上。

第二张是S 参数的计算结果绘图。结果明确显示,在研究的频率范围内,S11 约为-10 dB。

20180815044747970

20180815044757520

xy 平面上的对数电场模(上图)和S 参数绘图(下图)

为了进行远场分析,我们首先创建一个二维极坐标绘图。绘图方便直观查看天线在各种频率下的双向辐射方向图。我们发现,不同频率对应的辐射方向图的形状极其相似。

20180815044809199

yz 平面的极坐标绘图

最后是研究特定频率(此例为3 GHz)所对应的三维双向远场辐射方向图。结果表明,沿z 轴为最大辐射方向。此外,我们发现远场模式具有对称特征。

20180815044819321

20180815044828921

3 GHz 下的三维远场辐射方向图(上)和沿天线方向的辐射方向图(下)

 

继续阅读
详细解读 | 射频PA在通信领域的作用及重要性

电磁波传输距离和发射功率成正比,射频 PA 性能直接决定通讯距离、信号质量和待机时间(或耗电量),根据 Yole 数据显示,2017 年手机射频前端中射频 PA 市场规模约 50 亿美元,在整个射频前端中价值量占比 35%,仅次于滤波器,也是射频前端价值量最高的单类型芯片。

基于单片机的通信模块电路设计

在很多场合有线通信技术并不能满足实际需要,比如在野外恶劣环境中作业。使用无线射频通信芯片构建的通信模块,用单片机作为控制部件,配合一定的外围电路就能很好地进行两地空间区域信号对接,实现自由数据通信,解决了无线通信的技术难题。并且其具有硬件构造简单、维护方便、通信速率高、性能稳定等优点,能在电子通信业得到广泛应用。

通过FFT来计算螺旋天线的匝数

使用离散傅里叶变换(DFT)来计算线圈图片绘图垂直投影的幅度谱,通过确定谐波峰值的位置,便可以计算机上线圈的匝数。这个方法的对于线圈颜色为黑色的线圈,由于图片中对比度不够,呈现的投影对应的频谱峰值出现比较大的偏差。

移动通信系统中常见的RF干扰原因

今可能造成射频 干扰的原因正不断增多,有些显而易见容易跟踪,有些则非常细微,很难识别发现。虽然仔细设计基站可以提供一定的保护,但多数情况下对干扰信号只能在源头处进行控制。本文讨论射频干扰的各种可能成因,了解其根源后将有助于工程师对其进行测量 跟踪和排除。

RFID天线知多少?

物联网被视作继计算机、互联网之后,信息产业的第三次浪潮,在其实现的过程中,需要通信、传感器、RFID、定位等众多高新技术的合力协作。RFID与互联网、通信等技术相结合,可以实现对全球物品的跟踪与信息共享,因而被认为是实现物联网的重要基石,并被列为二十一世纪十大重要技术之一。