5G手机天线设计新里程: 突破金属外观限制,vivo惊艳领跑发布双频双极化5G毫米波与LTE整合天线(AiA)设计!

分享到:

vivo高级天线总监/ 首席天线专家黄奂衢博士表示:“目前毫米波主流成熟的方案为AiP(antenna-in-package)的模块设计,AiP方案因其RFIC与毫米波天线阵列相距较近,有低路损的优点,故许多专家和学者对AiP进行广泛而深入的良好相关研究与设计 [2]–[6],且AiP方案已于60 GHz毫米波(IEEE 802.11 ad,或称WiGig)及5G毫米波等应用上商用;此外,为了更广的空间覆盖和避免手握影响,终端的毫米波阵列往往需在多处(至少两处以上)甚至是多朝向(如:朝产品的侧立面与背盖面)进行设置。然而,若手机外观为金属设计,如金属框或金属壳,则常需在此金属外观上进行足够尺寸的开口与让位以置入AiP模块方案,而这常会较大程度低降低产品外观金属设计的完整性与竞争力;此外,因产品边缘往往为圆弧角设计,故一般的AiP模块若侧立置放时对产品边缘收弧较难共形,而需倾斜放置,进而造成排挤与增大产品的内部堆叠空间。有鉴于更好的金属外观兼容性,基于外观金属的单频毫米波天线设计也被提出 [7]–[8],且为了更好的支持现今全球主流5G毫米波频段n261(27.50 GHz–28.35 GHz)与n260(37.0 GHz–40.0 GHz),vivo在去年首先发表了与金属外形整合的双频毫米波天线设计 [9];而在更好地支持产品金属外观设计、复用天线辐射体,以进一步减少所需的系统容纳空间,及达到更好的5G毫米波无线通信体验的考量下,vivo在此进一步地提出了双频双极化的5G毫米波与非毫米波(如:LTE天线)的整合设计(AiA)。AiA为vivo去年(2018年)在IEEE iWAT受邀报告上提出并赋名。vivo天线预研团队抛转引玉,冀盼各位老师、专家学者、先进同好,不吝指导与斧正为是。

下文主要为选取节录自vivo前述投稿文章(略除细部尺寸与参数),以进行AiA相关设计概念的分享。此AiA设计为基于下图1中所示的一金属边框玻璃背盖的手机模型(其正面与背面外观相同)透过电磁仿真软件CST 2018进行。图中黄色部分为金属,蓝色部分为屏幕玻璃,而棕色部分为介电材质的包胶。图1中可看出一个5单元的5G毫米波天线阵列集成于金属边框中,且这金属边框同时也作为LTE低与高频的天线,图1中的尺寸单位皆为mm;而图2中可知当屏幕玻璃去除后,显示器模组与金属边框内侧距离为2.5 mm,即屏幕可视区的屏占比高于91.5%。图3则为去除掉后盖的内部侧视图,并显示AiA毫米波阵列中间天线单元(单元三)的位置图,而LTE中频天线与非蜂窝天线(如:GNSS,与WiFi和蓝牙等)(但不限)则可设计于AiA两侧的金属框上。

屏幕快照 2019-02-01 下午3.32.03

而图4则为图3中天线单元三(即阵列的中央单元)的放大图,可看出天线单元设计为双馈的stacked patch antenna,以能达到双频双极化。图5则是基于图4的天线单元三作为建构单元(building block)而设计的5单元双频双极化的5G毫米波天线阵列;其中图4与图5中阵列单元旁的介电填胶(即图1中的灰色部分)被隐藏以可较清楚地了解天线结构。而图6中的P1–P10则是5个天线单元的馈入端口,每两个端口成对而馈入一个天线单元,奇数端口激励垂直极化(V-pol.),而偶数端口激励水平极化(H-pol.)。此外,图6亦为LTE的天线结构 [10],其中红色符号为LTE的馈入端口,蓝色符号则为其匹配器件,LTE天线主辐射部即为此金属边框,故形成了突破金属外观的AiA设计。

屏幕快照 2019-02-01 下午3.32.30

图7与图8为单一天线单元三的两种端口负载情形的S参数、天线总效率,与峰值实际增益(realized gain)的性能比较,可看出在3GPP 5G 毫米波n261与n260带内,此两种端口负载情形的性能趋势相近,而端口断开(open)[11] 的n260峰值实际增益稍高,故此设计选择端口加载(loaded)的情形进行。而以图7中的|Snn| ≤ –10dB而言,此设计的天线单元于垂直极化工作时可覆盖27.18 GHz–28.58 GHz及36.92 GHz–40.21 GHz,而于水平极化工作时则可覆盖27.28 GHz–28.58 GHz及36.89 GHz–40.30GHz,故此天线单元可涵盖现今5G毫米波较为成熟的n261与n260的两个热点频段,而图8则为此天线单元的垂直与水平极化的天线总效率与峰值实际增益。对于代表n261与n260频段的两频点28.0 GHz及39.0 GHz而言,于垂直极化工作时两频点对应的天线总效率分别为–0.94dB及–0.78dB,而水平极化工作时天线总效率则分别为–0.99dB及–0.77dB。此外,28.0 GHz及39.0 GHz的垂直极化峰值实际增益(peak realized gain)则分别为6.79dBi及6.59dBi;而28.0 GHz及39.0 GHz的水平极化峰值实际增益则分别为5.43dBi及6.20dBi。图9为天线单元三在28.0 GHz与39.0 GHz时垂直极化端口与水平极化端口激励时的电流分布图,而在28.0 GHz电流分布图中,上层的patch被隐藏,以助观察下层patch上的电流分布。图10为天线单元三的3D辐射方向图,而图11与图12为其在phi = 0°与theta = 90°此两切面上2D的平行极化(co-pol)与交叉极化(x-pol)的实际增益方向图(gain patterns)。

屏幕快照 2019-02-01 下午3.33.09

屏幕快照 2019-02-01 下午3.33.33

屏幕快照 2019-02-01 下午3.33.56

下图14为5天线单元天线阵列在theta = 90°平面上扫描角为phi = 0°时28.0 GHz与39.0 GHz垂直与水平极化激励的电流分布图。而在28.0 GHz图中,上层patch被隐藏,以利观察下层patch上的电流分布。

屏幕快照 2019-02-01 下午3.35.06

下图15与图16分别为此天线阵列垂直与水平极化激励时在28.0 GHz与39.0 GHz的3D波束扫描实际增益方向图,而图17为在上述扫描波束在theta = 90°平面上的2D实际增益场型图。此设计以5 dB [7] 的旁瓣凖位(side-lobe level, SLL)作为波束扫描的工作界定。图18则呈现了上述在theta = 90°平面上不同扫描角的天线阵列总天线效率与峰值实际增益值。而在theta = 90°平面上,对应28.0 GHz与39.0 GHz的垂直极化扫描波束,最大的峰值实际增益分别为11.49 dBi与13.27 dBi;同理,而28.0 GHz与39.0 GHz的水平极化扫描波束,最大的峰值实际增益分别为11.35 dBi与12.18dBi。

屏幕快照 2019-02-01 下午3.35.34

屏幕快照 2019-02-01 下午3.36.06

屏幕快照 2019-02-01 下午3.36.29

下图19为LTE低高频天线的|Snn|与天线总效率,当|Snn| ≤ –6dB时,覆盖带宽为872 MHz–962 MHz及2265 MHz–2740 MHz,故此LTE天线可涵盖LTE Band 8(880 MHz–960 MHz)、Band 40(2300 MHz–2400 MHz),与Band 41(2496 MHz–2690 MHz),若要进行不同低频段(如:LTE Band 17、Band 20,或Band 5等)的覆盖,则可使用电调(tunable)器件。而在LTE Band 8、Band 40,与Band 41带内(in-band)的最低天线总效率分别为:–3.44 dB、–1.37 dB,与–1.72 dB,故可良好地进行无线通信。

屏幕快照 2019-02-01 下午3.36.57

最后,黄奂衢博士表示:“此AiA设计,除了可更好地维护金属外观的完整度,也可支撑较佳的产品外形的共形性,并减少系统内部对此两种天线所需的容纳空间,且此种天线单元设计,因单元底部金属屏蔽的效果,故毫米波天线阵列对其后方的环境,如:相关器件、背盖材质与厚度,及馈入结构等,可较不敏感故而有较稳定的天线性能。此外,因当AiP为系统内置摆放时,则其上或其前的背盖(即天线罩)材质、厚度,及其与AiP的间距,往往皆会对AiP的性能造成不等程度的影响或劣化[12],且内置AiP邻近的系统内部电气与结构环境,也有影响其天线性能的可能。但此AiA设计,因非内置摆放,故前述因素的影响程度可较小。而天线阵列的馈入机制(与对应的损耗)亦为AiA设计与性能的关键,vivo也已进行了相关设计与分析(如下图20所示为基于(但不限)FPC方式的馈入),及进行IEEE投稿并陆续获录取,将在之后与大家分享,谢谢。”

屏幕快照 2019-02-01 下午3.37.29

继续阅读
关于孔径调谐你有什么看法?且看4G/5G智能机的表现(上)

为使智能手机在不断增加的 RF 频段范围内高效工作并支持向 5G 过渡,天线孔径调谐至关重要。智能手机需要更多天线来支持不断增加的 RF 要求(例如新的 5G 频段、MIMO 和载波聚合),但是由于智能手机工业设计的变化,提供给这些天线的可用空间却很小。因此,天线变得越来越小,这可能会降低天线的效率和带宽。

5G革命给Skyworks和Qorvo开辟了智能手机之外的广阔市场空间

进入2019年,半导体股票在经历了2018年的大幅下挫之后触底回升。2018年,中美贸易战爆发,叠加多年来高歌猛进的智能手机首次出现销售疲软,受智能手机影响最为严重的公司首当其冲地遭受了最大冲击。由于大中华区销售疲软,苹果公司去年第四季度iPhone销售收入首次出现同比下降15%的惨淡局面,和苹果公司业务牵连最深的那些公司也相继发布了收入下降的财务报告。

EDICON 2019大会的演讲《5G射频挑战》

日前,Qorvo公司手机事业部高级销售经理David Zhao在EDICON 2019大会上发表了题为《5G射频挑战》的演讲,并接受了电子工程世界、半导体行业观察和集微网等媒体的采访,从领先射频前端解决方案供应商的角度谈及了5G时代射频前端的机遇与挑战。

利用GaN实现6GHz以下的5G大规模MIMO

据估计,到2021年,拥有移动电话的人数(55亿)将会超过自来水用户的数量(53亿)。极耗带宽的视频将进一步增加对移动网络的需求,占移动通信流量的78%。1使用大规模多路输入、多路输出(MIMO)技术的5G网络将成为能否支持这种增长的关键。根据Strategy Analytics预测,到2023年,5G移动连接预计将从2019年的500万增长到近5.77亿

从4G到5G,qorvo教你设计射频前段架构

3月4日报道称,5G即将迎来商用化,各通信企业开始相继推出面向企业客户的新服务。在物联网(IoT)市场上,通信企业将打造可高速收发大量数据的环境。不仅面向使用智能手机的个人客户,还将增加与制造业等其他行业的合作,5G有可能改变产业的竞争格局。