5G单基站射频侧PCB价值量约9120元,单基站价值量提升7倍以上

分享到:

1、5G基站引入大规模阵列天线

MassiveMIMO即大规模MIMO(Multiple-inputMultiple-output,多输入多输出)技术,旨在通过更多的天线大幅提高网络容量和信号质量,原理上可类比高速公路拓展马路道数来提高车流量。

采用MassiveMIMO的5G基站不但可以通过复用更多的无线信号流提升网络容量,还可通过波束赋形大幅提升网络覆盖能力。

波束赋形技术通过调整天线增益空间分布,使信号能量在发送时更集中指向目标终端,以弥补信号发送后在空间传输的损耗,大幅提升网络覆盖能力。

相比较4G基站,采用支持大规模阵列天线技术的AAU是5G基站成本大幅增加的主要原因。

1


2、天线尺寸与频率相关,5G天线或以64通道为主

未来国内5G频段或以3.5GHz和2.6GHz为主,根据此频段得出半个波长大概是4.3cm/5.8cm。根据目前的5G测试来看,目前采用64通道的MassiveMIMO技术是各个设备商的主流测试选择。

虽然通道数越多,网络的性能越高,但综合考虑天线尺寸大小/重量、天线性能以及成本因素,目前运营商也在考虑低成本的MassiveMIMO方案—16通道。但5G前期如果64通道天线成本未下降到运营商接受的范围内,可能运营商在满足部署和容量的情况下优先考虑16通道方案。

2


3、5G基站架构发生较大变化,天线有源化趋势明显

4G宏基站主要分三个部分天线、射 频单元RRU和部署在机房内的基带处理单元 BBU。5G网络倾向于采用AAU+CU+DU的 全新无线接入网构架。


3

5G时代,天线通道数增加以及天线有源化对天线设计提出更高要求,小型化及轻量化是基础。4G时代,天线形态基本是4T4R(FDD)或者8T8R(TDD),根据目前测验的情况来看,5G时代可能以64T64R大规模阵列天线为主。

通道数同比增加了7~15倍,意味着天线对射频器件需求量同比增加了7-15倍,同时天线无源部分将与RRU合为AAU,都对5G时代天线的体积及重量提出了更高的设计要求。

4G时代,无源天线+RRU重量大概在24~34kg,目前测试中的5GAAU重量大概在45kg左右,重量同比增加了32%~88%。所以在5G天线集成化的趋势下,小型化及轻量化成为天线设计基础。

4

4、大规模阵列天线带动射频组件需求量大幅增加

如上文所述,预计5G商用宏基站将以64通道的大规模阵列天线为主。天线单元主要包括天线罩、辐射单元和校准网络综合板三个部分。

从当前5G产品的研发现状来看,为实现波束赋形等新技术,预计未来64通道的天线阵列将容纳64个功率放大器、64个开关、64个锁相环、64个低噪声放大器和64个滤波器等器件。

5

5、大规模阵列天线驱动5G天线价值量提升

采用MassiveMIMO的5G大规模天线不仅仅是数量的增加,天线的形式也将由无源转向有源,可实现各个天线振子相位和功率的自适应调整,显著提高MIMO系统的空间分辨率,提高频谱效率,从而提升网络容量。

因此,由于MassiveMIMO技术的采用,导致5G规模阵列天线复杂度的大幅提升,产品的价格也因此而大幅上涨。

以4G天线为例,近期常用的4通道FDD电调天线售价约在1400元每副,8通道TDD电调天线的售价约为每副2000元,而到了5G时代,据当前实验用5G基站的成本分析,初期64T64R规格的大规模阵列天线的天线单元(上游天线厂商制造部分)每扇区售价较贵,预计商用初期天线(AAU中无源天线+滤波器)采购价将达到8000元左右,随着规模量产,我们预计未来每扇区的平均价格有望下降至3500元左右,但相较4G时期的平均天线价格仍然有较大幅度的提升。

5G天线市场空间同比增长124%~324%。假设5G建设周期为2020-2025年,预计建设高峰期(2020~2023年)宏基站天线市场每年空间可达114.2-184.4亿元;相较4G建设高峰期国内平均每年约50多亿元(高峰期4G基站一年建设数为100万站,单幅天线平均价格1700元)的宏基站天线市场,5G市场空间同比增长124%~324%。

6

6、与基站设备商深度合作的天线制造商或将充分受益

由于5G基站天线将与RRU融合形成新的单元AAU,天线公司的下游客户将由以往的运营商转变为设备商。

考虑到通信设备商的数量较少,目前市场的前四名(华为、诺基亚、爱立信、中兴)几乎垄断全球运营商无线通信市场份额(基站设备市场占比在90%以上),对于天线供应商来说下游将更为集中。因此,与设备商有深度合作,并且在大规模阵列天线有较多技术储备的龙头天线厂商将有望获得更多的市场份额。

其中,天线振子是天线的核心部件。天线振子作为天线的主要组成部分,主要负责将信号放大和控制信号辐射方向,同样可以使天线接收到的电磁信号更强。

根据天线的形态,天线振子形态也包括多种多样,有杆状、面状等;根据加工工艺,主要有钣金、PCB、塑料等。传统4G天线振子多以金属钣金为主。

7

天线振子加工方式主要有金属压铸/钣金、PCB贴片和塑料振子,4G时代更多以金属压铸/钣金方式加工,组装更多的靠人工,效率低下。

5G时代由于频段更高且采用Massive-MIMO技术,天线振子尺寸变小且数量大幅增长,综合考虑天线性能及AAU安装问题,塑料天线振子方案具有一定的综合优势。

继续阅读
5G建设带动产业链发展 PCB板块率先受益

5G逐步进入建设阶段,产业成熟度逐渐提升,带动上游产业景气度提升。 一方面,5G手机在今年三季度逐步面世,产业链对后期投资乐观,产业巨头看好5G前景上调年度资本开支。另一方面,随着5G网络设备加速推进,设备端对于上游射频器件、PCB等集采在上半年已经陆续展开,也已经部分反映到相关公司中期业绩报表中,A股沪电股份、深南电路、生益科技等多股上半年业绩亮眼。 5G产业预期和行业高景气度推动相关产业链公司股价不断攀高。7月25日,生益科技、深南电路、沪电股份、鹏鼎控股均创下历史新高。

射频器件——国产手机难以绕过的门槛

随着中美关系的发展,芯片和半导体器件国产自主化成为了近期人们关注的热点。华为以及海思是中国半导体国产化的先锋,华为手机的核心半导体器件中,国产化的比例居于同行前列。然而,如果我们仔细分析华为手机中的半导体器件,会发现射频前端仍然是国产化的瓶颈。本文将分析射频前端的重要性,并展望未来射频前端器件国产化的发展。

5G将至,小基站迎来发展机遇

5G商用日期越来越近,市场上对small cell(小基站)的关注度也日益倍增。这主要是因为运行在频率较高频段的5G会面对信号覆盖问题,这时候Small cell就可以充当一个“补充者”的角色,扩大信号覆盖范围。这也可以让移动设备避免因为信号过弱、增强射频发射功率而带来的功耗过大问题。而这其实只是small cell的众多好处之一。

带你了解射频接收电路的结构及工作原理

一部可支持打电话、发短信、网络服务、APP应用的手机,通常包含五个部分:射频、基带、电源管理、外设、软件。在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。其射频接收电路又是怎样的?

我们或将见证5G引发的手机“进化”之路!

5G网络的低延迟特性将彻底改变用户体验,并支持新应用。