手机射频芯片整合将是未来的发展趋势

标签:射频LNAPA
分享到:

通信技术从2G 发展到4G,每一代的蜂窝技术都出现不同面貌的革新。从2G 到3G 增加接收分集技术,3G 到4G 则增加载波聚合,再到4.5G 时则是增加超高频,4x4 MIMO,更多的载波聚合。
 
而这些变革都为手机射频发展带来新的成长动能。手机的射频前端是指介于天线与射频收发之间的通信零部件,包含滤波器、LNA(低噪声放大器)、PA(功率放大器)、开关、天线调谐等。
 
滤波器主要用来滤除噪声、干扰及不需要的信号,只留下所需频率范围内的信号。
 
PA 则是在发射信号时通过PA 放大输入信号,使得输出的信号幅度够大,以便后续处理。
 
开关则是利用开启和关闭之间切换,允许信号通过或不通过。
 
天线调谐器则位于天线之后,但在信号路径的末端之前,使得两侧的电特性彼此匹配,以改善它们之间的功率传输。
 
在接收信号方面,简单来说,信号传输路径是由天线接到信号后,经过开关及滤波器,传至LNA 将信号放大,再到射频收发,最后传送到基带。
 
至于信号发射,则是从基带出发,传送至射频收发后到PA,再到开关及滤波器,最后由天线发射信号。
 
而随着进入5G,更多的频段导入,以及涵盖更多新技术,使得射频前端零部件的价值不断上升。
 
由于5G 导入的技术愈来愈多,射频前端的零件用量和复杂性急剧增加,但智能手机分配给该功能的PCB 空间量却不断下降,而通过模组化提升前端零件的密度就成为趋势所在。
 
为了节省手机成本,空间及功耗,5G SoC 和5G 射频芯片的整合将是未来的发展趋势。而这整合将分成三大阶段:
 
第一阶段:初期5G 与4G LTE 资料的传输将以各自独立的方式存在。以1 个7 nm制程的AP 与4G LTE(包含2G/3G) 基带芯片的SoC,搭配一组射频芯片(RFIC)。
 
而5G 则完全由另一个独立配置进行,包含一个10 nm制程,能同时支援Sub-6GHz 及毫米波段的5G 基带芯片,前端配置2 个独立的射频元件,包括一个支持5G Sub-6GHz射频,另一个是毫米波射频前端天线模组。
 
第二阶段:在考虑制程良率和成本的情况下下,主流配置仍会是一颗独立AP 与一个体积更小的4G/5G 基带芯片。
 
第三阶段:将会出现AP 与4G/5G 基带芯片SoC 的解决方案,LTE 与Sub-6GHz 射频也有机会整合。至于毫米波射频前端仍必须以独立模组存在。
 
据估计,全球射频前端市场将由2017年的151亿美元,成长到2023年的352亿美元,年复合成长率高达14%。此外,根据Navian估计,模组化现在占RF元件市场约30%,在不断整合的趋势下,模组化比率将在未来逐步上升。
 
  
继续阅读
工程师必备:EMC设计规范

本规范重点在单板的 EMC 设计上,附带一些必须的 EMC 知识及法则。在印制电路板设计阶段对电磁兼容考虑将减少电路在样机中发生电磁干扰。问题的种类包括公共阻抗耦合、串扰、高频载流导线产生的辐射和通过由互连布线和印制线形成的回路拾取噪声等。

什么是射频、基带、调制、解调 -- 以 手机射频电路为例图解

DSP如果涉及通信,在这里指的究竟是什么?DSP和基带芯片、射频芯片是什么关系?它们的工作流程是怎样的?

射频变压器阻抗不是常用50欧姆,该怎样高精度测试?

射频变压器能够实现阻抗、电压、电流的变换,且具有隔直(流)、共模抑制及单端转差分(或称为非平衡转平衡)功能,所以被广泛应用于射频电路诸如推挽放大器、双平衡混频器及A/D ICs中。对于这类阻抗变换器件,其单端阻抗往往不是50 Ohm,给性能测试制造了重重困难。相对于传统back-to-back这种背靠背测试方法的局限性,下面将为大家展示一种基于矢量网络分析仪的测试方法。

一文读懂28GHz 5G通信频段射频前端模块

毫米波 5G 系统可能需要用户终端采用多个 FEM 构成相控阵架构或开关天线波束架构。因此 FEM 必须采用高效、紧凑和低成本的方式实现,且最好能简单控制和监测。本文介绍了符合以上所有要求的 28GHz 5G 通信频段(27.5 至 28.35GHz)射频前端模块 MMIC(单片微波集成电路)的设计、实现和验证。

射频工程师必看:传输线的全反射状态

我们在讲述电压驻波比的文章中提到过传输线的状态,即完全匹配状态,完全反射状态和部分比配状态。我们知道,完全匹配状态下,是不存在驻波的,即驻波比 VSWR 为 1. 完全反射状态下,会形成纯驻波,电压驻波比 VSWR 为无穷大。实际系统设计中,最为常用的是部分匹配,即我们要根据系统的驻波比要求去完成实际系统的设计。今天,我们来看一个极限——传输线的全反射状态——即纯驻波条件下的传输线特性。