将相控阵雷达系统移到集成电路中是怎样的体验?

分享到:

来源:CNTR

相控阵雷达系统利用多个发射和接收通道来实现正常运行。以前,这些平台在构造时都使用分立的发射和接收集成电路(IC)。这些系统在发射(Tx)电路的数模转换器(DAC)和接收(Rx)电路的模数转换器(ADC)中分别使用分立的芯片。这种分立方案使得许多系统尺寸庞大、成本高昂且功耗高,如此才能获得所需的通道数量,进而发挥所需的功能。由于制造和校准过程复杂,这些系统通常也需要很长时间才能上市。
 
最近出现一种利用集成收发器的方法,它将许多曾经被认为完全不同的功能融合到单个IC之中。这些IC助力实现了小尺寸、低功耗和低成本、具有高通道数量的相控阵雷达系统,且上市时间更短。
 
集成式收发器
 
集成式收发器(例如图1所示的收发器)将多种功能集成到单个IC上。例如,新型收发器将DAC、ADC、本振(LO)频率合成器、微处理器、混频器,以及更多功能集成到12 mm × 12 mm 单芯片产品中。此外,该产品还集成了两个接收通道和两个发射通道,以及多个数字信号处理(DSP)组件,以获得系统所需的瞬时带宽。还提供一个应用程序接口(API),用于在客户的软件平台上操作收发器。可以利用片内前端网络实现增益和衰减控制。内置的初始化和跟踪校准例程用于提供许多通信和军事应用所需的性能。
1
 
图1. ADRV9009是将多种功能集成到单个IC中的集成式收发器示例。
 
这些集成式收发器能够通过注入一个称为REF_CLK的参考时钟信号来创建发射器和接收器所需的所有时钟信号。然后,由片内锁相环(PLL)合成DAC/ADC采样、LO生成和微处理器时钟所需的所有时钟。如果内部LO相位噪声不足以满足客户的应用需求,用户可以选择从外部注入低相位噪声的LO。
 
来自收发器的数据经由标准化的JESD204b高速串行数据接口进行传输。这个接口支持同时接收和发送大量数据。新集成式收发器解决方案可以帮助提供接口IP,帮助客户加快上市时间。如果需要确定性延迟和数据同步,用户可以利用内置的多芯片同步(MCS)特性,并发出SYS_REF信号作为初始通道对齐序列(ILAS)的主时序基准。
 
此外,可以利用内置的RFPLL相位同步特性,将发射或接收通道的LO相位设置为相对于主参考相位具备确定性。通过利用 MCS和RFPLL相位同步特性,可以在初始化部件、频率调谐,或者打开/关闭收发通道时确保相位对齐。图2显示了一个新型集成式收发器示例,该收发器提供确定性相位,且支持所有这些特性。
2
3
图2. 内置RFPLL相位同步特性让系统与主参考源之间呈确定性相位关系。
 
使用多个集成式收发器
 
如果系统需要两个以上接收器和两个发射器,用户仍然能使用多个集成式收发器,从因为单芯片接收和发射通道实现的小尺寸中获益。该技术的示例如图3所示。可以通过使用并发型SYS_REF脉冲来同时触发所有IC的内部分频器,从而同步多个集成式收发器。这些SYS_REF脉冲可由时钟芯片或基带处理器发出,附带可编程延迟,该延迟可以补偿各用于补偿各 IC 之间由于路径长度不匹配引入的延时波动。从而使跨多个芯片的数据路径和多个LO都可以得到确定性时延。
4
图3. 可使用多个集成式收发器来增加系统的通道数量。
 
集成式收发器是支撑相控阵雷达平台的中坚力量 
通过使用同步集成式收发器来增加通道数量,让这些器件成为支撑相控阵雷达平台的中坚力量。结合相位和幅度对齐的发射和接收通道时,使用多个集成式收发器已展示出系统级的动态范围、杂散和相位噪声改善。
 
片内DSP特性,例如数控振荡器(NCO)和数字上变频器,或者数字下变频器(DDC),现在支持在单个IC内采用系统级杂散去相关方法。
 
通过使用多个集成式收发器来组合收发器通道,已展示出系统级噪声谱密度(NSD)和杂散性能的改善。此举通过降低系统的有效本底噪声,同时维持通道的全部功能来改善相控阵雷达系统的动态范围。图4显示了在集成多达8个集成式收发器接收通道,有效增加相控阵系统中的位数之后,得出的系统级测量结果。注意,从一个通道增加到八个通道时,NSD和计算得出的本底噪声(在各图中用红线表示)将增加6 dB。这是因为,虽然总共有8个通道,但是在用于创建这8个通道的4个集成式收发器中,只存在4个不同且不相关的LO(也就是说,NLO=4) 因此实现了如下改善
5
 
得出的结果与集成式收发器提供的实验性结果相近。此外,多余的成像频率以不相关的方式聚合汇总,实现系统级杂散性能改善。随着通道数量增加,性能会实现进一步改善,从而实现可扩展的系统。
 
67
图4. 使用ADRV9009集成式收发器来集成接收通道可以降低噪声谱密度,并改善动态范围。
 
此外,在对齐相位和集成多个集成式收发器通道之后,相控阵系统的相位噪声可以得到改善。从图5最上方的三条曲线显示的测量结果可以看出,在利用4个集成式收发器IC的内部LO 组合8个通道之后,相位噪声性能得到了改善。再重复一遍,存在4个不同且不相关的LO(也就是说,NLO = 4)时,当从1个发射通道增加为8个发射通道时,相位噪声会增加6 dB。增加通道数量可以进一步增加相控阵雷达系统的相位噪声。或者,可以将外部LO注入到由N个集成式收发器构成的每个子阵列中,并从子阵列层级改善初始相位噪声(如图5中的蓝色曲线所示)。
 
但是,如此一来,该子阵列中的各元件因为都共用同一个LO源,就会互相关联,所以无法自行在子阵列中提供通道聚合改善。对于图5所示的外部LO相位噪声数据,其中使用了一个Rohde & Schwarz SMA100B信号发生器作为外部LO源。
8
图5. 使用内部LO时,集成多个ADRV9009的发射通道可以改善系统级相位噪声性能。注入外部LO会改善子阵列的初始相位噪声。
 
集成的DSP特性(例如NCO、数字移相器和DUC/DDC)允许在数字域内实施基带相移和频率位移,进而允许在基于多通道、集成式收发器的相控阵雷达系统中实施数字波束成型。将多个功能集成到单个IC上之后,系统现在能够在许多相关的相控阵应用中,利用集成式收发器实现天线点阵间隔。利用更多收发器来增加通道数量一般可以让波束变窄,但会导致系统变大。但是,现在将多个功能集成到单个IC之后,系统变大的比例还是要小于过去。使用MATLAB®模拟辐射图之后,图6显示通道数量从23增加到 N = 210 时,波束如何变窄,理论波瓣幅度如何变深。实际的功率零点将在天线设计中决定。
9
 
图6. DSP特性现在可以利用片内NCO和DDC/DUC实现数字相移。增加通道数量,优化相移会使集成式收发器形成宽度变窄的波束。
 
结论

 

在单个IC中集成多个数字和模拟功能可以实现更小型的相控阵雷达系统。这些系统支持实施数字波束成型和混合波束成型,具体取决于系统规格。已经证明使用ADI提供的 ADRV9009 可以实现系统级性能改善。这些集成式器件让许多新系统能够使用相同的硬件来运行多个应用。
继续阅读
将相控阵雷达系统移到集成电路中是怎样的体验?

相控阵雷达系统利用多个发射和接收通道来实现正常运行。以前,这些平台在构造时都使用分立的发射和接收集成电路(IC)。这些系统在发射(Tx)电路的数模转换器(DAC)和接收(Rx)电路的模数转换器(ADC)中分别使用分立的芯片。这种分立方案使得许多系统尺寸庞大、成本高昂且功耗高,如此才能获得所需的通道数量,进而发挥所需的功能。由于制造和校准过程复杂,这些系统通常也需要很长时间才能上市。

5G将是一个彻底的失败

无线通信产业已经发展了四代,目前正处于5G产业化前夕,是当下到一个最热的话题,5G如何发展,前景如何,是各个方面包括学术界、产业界、投资界以及政府都非常关心的。另外,中国已经启动6G研究的消息也见诸报端,未来无线通信产业如何发展,是不是会继续有6、7、8、9G,也引起了大家的关切。为了回答这些问题,我们首先简单地回顾一下无线通信产业发展的历史。

摩尔定律失效后,芯片会如何发展?

在过去几十年里,摩尔定律指引着集成电路产业的发展,芯片制造工艺也在按部就班地推进。但进入了最近几年,芯片的微缩周期因受到硅材料本身特性和设备的限制而逐渐变慢。换句话说,摩尔定律失效了。

中国半导体发展现状面面观

如果拿跑步来做比喻,原来我们是连他们的背影都看不到,现在能够清楚地看到了他们的身影,他在前面跑,我们在后面追。到2020年时,我们基本上可以看见他们的后脑勺和头发了。这个差距不是说技术上的差距,而是说体系上的差距、产业生态上的差距,当然技术上我们也有差距。

也谈去耦电容

- 何谓正确去耦?有何必要性? - 实际电容及其寄生效应 - 去耦电容类型 - 局部高频去耦建议 - 由LC去耦网络构成的谐振电路 - 不良去耦技术对性能的影响