利用 DPD 和 75Ω 有线电视开关,发挥全双工 DOCSIS® 3.1 架构的潜能

标签:RFFDXDPD
分享到:

为了实现 FDX DOCSIS® 3.1 和 10 Gbps 对称流传输,需要启用高度线性化的设备,以支持数字预失真 (DPD),包括 75Ω 有线电视开关。探索 DPD 如何在有线电视光纤节点上工作,了解如何为您的应用选择合适的开关。
 
来自消费者和 5G 无线网络的压力正促使有线电视 (CATV) 提供商比过去更积极地谋求发展。目前,有线电视行业正有条不紊地制定下一代有线电视生态系统的新标准,其中包括全双工 (FDX) DOCSIS 3.1,它承诺在现有的光纤同轴 (HFC) 混合系统的上游和下游提供。
 

FDX 需要更高的 Pout、更低的误差和 DPD

分布式接入架构 (DAA)光纤深度远程 PHY/远程 MAC PHY 正将某些功能从主控端移动到更靠近用户的光纤节点。但是,如果不针对 DOCSIS 3.1 FDX 架构进行设计,就不可能在 DAA 上达到 10 Gbps 的上游和下游数据传输速率,也无法保有与 5G 蜂窝基础设施竞争的能力。

 

之前的博客中,我们讨论了实施全双工 DOCSIS 所面临的一些 RF 挑战。为了启用 FDX,两个最关键的要素包括:

  • 调制误差比 (MER)MER 是有线电视系统中测量误差和线性度的一种方法。FDX 面临的挑战在于获得大量 RF 功率的同时,降低误差(MER 更低)。要做到这一点,就需要 DPD。
  • 数字预失真 (DPD)DPD 是一种利用数字信号处理技术消除失真的软件方法。它允许功率放大器 (PA) 具有相同的 MER 和输出功率,但电流更低,要达到 FDX 更高的功率输出要求,这些都是必不可少的。这种技术在无线市场上得到了广泛的应用,但在有线电视网络中却没有那么普遍。

 
相关博客文章:全双工 DOCSIS 3.1 助力实现 10 Gbps 有线电视网络

简而言之,功率放大器需要提高效率,达到 76.8 dBmV 复合输出功率,且具备更出色的 ACPR(线性度),才能最终满足 FDX 对于 MER 的规范要求。尽管功率放大器硬件实现了大部分的线性度改进,DPD 在这方面的贡献较小,但这部分贡献却不可或缺。
 

数字预失真在有线电视节点上如何工作

在更高水平上,DPD 可模仿并预测放大器的非线性行为,并在功率放大器的输入端注入反向信号,从而减少放大器的非线性行为,解决整体的电流消耗问题。下图展示了带 DPD  不带 DPD 的功率放大器的非线性特性。

Nonlinear Power Amplifier Behavior Without and With DPD

对于有线电视光纤节点,节点中的数模转换器 (DAC) 电路使用软件,通过耦合器测量每个功率放大器输出,以此确定哪个功率放大器的线性度最差。然后电路会基于最差的测量值来计算 DPD 算法,并从下游将校正结果发送给所有功率放大器。线性度最差的设备得到最大程度的校正,最终结果就是,多台设备比在没有采用 DPD 算法时更出色地运行。

 

在典型的四端口节点中,链中 RF 放大器的功耗约为 85W,其中 72W 来自于最后一个功率倍增器 PA。使用 DPD 可对每个功率放大器进行线性化处理,并将总功耗降低多达20%

 

面向 DPD  SP4TSPDT  SPST 解决方案

在线缆光纤节点中启用 DPD 需要 75‑Ω 的开关。何时应选择 SPSTSPDT  SP4T 开关?这完全由节点的几何形状(物理布局)决定。场中的节点在盒子两侧可能都有输出,其轨迹可能无法进入单个 SP4T 开关。

 

对于 DPD,不存在唯一正确的设计方法。最终的设计方法要以客户的应用、布局、偏好以及性能需求和成本为基础决定。

 

下方的框图展示了在四端口光纤节点中实施 DPD 的三种不同设计方法:

  •  DPD 通道 + 1  SP4T 开关。在标准四端口光纤节点中,电路采用一个 DAC 驱动四个输出,以此监测 4 个功率放大器。它使用一个 SP4T 开关、一个模数转换器 (ADC)  DPD 算法来调节所有四个功率放大器。

4-Port Optical Node with ></span></p>
</div>
<div class=

  •  DPD 通道 + 3-4 个开关。这种方法使用 1  ADC  3  SPDT 开关,或 4  SPST 开关,而不是 1  ADC  1  SP4T 开关。个输出放大器均可单独监控,以确定最佳的 DPD 校正因数。这种方法使用了更多的组件和开关,但是它可以提供更精确的输出,或者在单独的节点设计中更出色地工作。下面的第一个示意图使用了 3  SPDT 开关,而第二个示意图使用了 4  SPST 开关。

4-Port Optical Node with Two DPD Pathways

4-Port Optical Node with Feedback for DPD and Four SPST Switches
 

吸收式/反射式开关

除了开关和掷的数量之外,为这些 DPD 节点应用选择正确的开关类型也很重要。您可以选择吸收式开关反射式开关。它们的主要区别如下:

吸收式开关:

  • 当开关关闭时,内部端接至 75Ω
  • 更高隔离度
  • 更高插入损耗(额外的内部开关所致)
  • 更低功耗(端接所致)
  • 更高成本
     

反射式开关:

  • 内部端接,在开关关闭时保持开启
  • 更低隔离
  • 更出色的插入损耗
  • 更高功率处理
  • 开关时间更快
  • 更低成本

最终选择哪种,取决于成本与性能。如果功率处理和较低的插入损耗对于设计非常关键,则选择反射式开关。如果更高的隔离度非常重要,且设计可以处理额外的插入损耗和更高成本,请选择吸收式开关。
 

总结

实施 DPD 时,需要更多的设计资源和更多成本来购买额外的组件及开关。但是,其优点大于缺点,因为您可以获得自适应系数;自我校准、更加线性的PA 输出;电流消耗减少,最重要的是,实现了 FDX

相关资讯
应对5G复杂性:理解射频前端设计中的“功率等级2”

伴随更多频段的增加和愈发复杂的移动设备出现,蜂窝通信市场已发生巨大变化。随着4G和5G的部署,3GPP的最新规范已将PC2引入FDD频段,更高的发射功率水平也由此带来了与之相关的全新挑战。下面,就让我们回顾一下PC2的基础知识,并深入探讨PC2如何随着这些新的5G部署而演进。

如何消除探针电容对电感测量的影响?深入分析与校正方法

探针电容对电感测量精度的影响不可忽视,特别是在频率接近电感谐振频率时。寄生电容与电感并联,改变了总电抗,导致测量误差。通过选择适当的测量频率和电容校正,可以有效减少这种误差,提高测量准确性。通过迭代优化频率,能够进一步提升精度,确保电感测量结果的可靠性,特别是在高精度应用场合中。

超宽带UWB技术:探索应用、优势与未来发展前景

超宽带(UWB)技术通过宽频带信号传输实现高数据速率、低功耗和高精度定位,广泛应用于物联网、智能家居、汽车行业等多个领域。UWB的抗干扰能力和短脉冲特性,使其在复杂环境中表现出色,特别适合精准定位与实时数据传输。随着技术不断成熟,UWB有望在智能城市、智能医疗等领域发挥重要作用,推动无线通信技术的创新与发展。

嵌入式系统电源管理:从PMU到DVFS技术的全面解析

嵌入式系统电源管理技术在确保高性能的同时优化功耗,成为现代嵌入式设备设计中的核心环节。通过电源管理单元(PMU)、动态电压频率调节(DVFS)、电源模式优化等技术,系统能够根据工作负载智能调节电压、频率和功耗,从而提高能效。能量收集技术进一步增强了系统的自给能力,减少对外部电源的依赖。随着智能硬件的普及,电源管理技术将持续发展,推动嵌入式系统在性能和能效上的突破。

全面解析无线通信:从信号传输到功率控制,技术原理大揭秘

无线通信技术通过调制、解调、信道编码与多路复用等多项关键技术实现信息的高效传输。本文详细介绍了无线通信的基本原理,重点分析了信号传输、调制解调、信道编码、多路复用和功率控制等技术,揭示了它们如何提升无线通信的效率和可靠性。这些技术为无线网络的高速传输和广泛应用提供了基础支持。

精彩活动