基带、射频,到底是干什么用的?

分享到:

    现在都流行“端到端”,我们就以手机通话为例,观察信号从手机到基站的整个过程,来看看基带和射频到底是干什么用的。

    当手机通话接通后,人的声音会通过手机麦克风拾音,变成电信号。这个电信号,是模拟信号,我们也可以称之为原始信号。

    声波(机械波)转换成电信号

    此时,我们的第一个主角——基带,开始登场。

    基带,英文叫Baseband,基本频带。

    基本频带是指一段特殊的频率带宽,也就是频率范围在零频附近(从直流到几百KHz)的这段带宽。处于这个频带的信号,我们成为基带信号。基带信号是最“基础”的信号。

    现实生活中我们经常提到的基带,更多是指手机的基带芯片、电路,或者基站的基带处理单元(也就是我们常说的BBU)。

    回到我们刚才所说的语音模拟信号。

    这些信号会通过基带中的AD数模转换电路,完成采样、量化、编码,变成数字信号。具体过程如下如所示:

    上图中的编码,我们称之为信源编码。

    信源编码,说白了,就是把声音、画面变成0和1。在转换的过程中,信源编码还需要进行尽可能地压缩,以便减少“体积”。

    对于音频信号,我们常用的是PCM编码(脉冲编码调制,上图就是)和MP3编码等。在移动通信系统中,以3GWCDMA为例,用的是AMR语音编码。

    对于视频信号,常用的是MPEG-4编码(MP4),还有H.264、H.265编码。大家应该也比较熟悉。

    除了信源编码之外,基带还要做信道编码。

    编码分为信源编码和信道编码

    信道编码,和信源编码完全不同。信源编码是减少“体积”。信道编码恰好相反,是增加“体积”。

    信道编码通过增加冗余信息,对抗信道中的干扰和衰减,改善链路性能。

    举个例子,信道编码就像在货物边上填塞保护泡沫。如果路上遇到颠簸,发生碰撞,货物的受损概率会降低。

    去年联想投票事件里提到的Turbo码、Polar码,LDPC码,还有比较有名的卷积码,全部都属于信道编码。

    除了编码之外,基带还要对信号进行加密。

    接下来的工作,还是基带负责,那就是调制。

    调制,简单来说,就是让“波”更好地表示0和1。

    最基本的调制方法,就是调频(FM)、调幅(AM)、调相(PM)。如下图所示,就是用不同的波形,代表0和1。

    现代数字通信技术非常发达,在上述基础上,研究出了多种调制方式。例如幅移键控(ASK)、频移键控(FSK)、相移键控(PSK),还有正交幅度调制,也就是大名鼎鼎的QAM(发音是“夸姆”)。

    为了直观表达各种调制方式,我们会采用一种叫做星座图的工具。星座图中的点,可以指示调制信号幅度和相位的可能状态。

    星座图

    16QAM示意图

    (1个符号代表4个bit)

    调制之后的信号,单个符号能够承载的信息量大大提升。现在5G普遍采用的256QAM,可以用1个符号表示8bit的数据。

    256QAM

    好了,基带的活儿总算是干完了。接下来该怎么办呢?

    轮到射频登场了。

    射频,英文名是RadioFrequency,也就是大家熟悉的RF。从英文字面上来说,RadioFrequency是无线电频率的意思。严格来说,射频是指频率范围在300KHz~300GHz的高频电磁波。

    大家都知道,电流通过导体,会形成磁场。交变电流通过导体,会形成电磁场,产生电磁波。

    频率低于100kHz的电磁波会被地表吸收,不能形成有效的传输。频率高于100kHz的电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力。

    这种具有远距离传输能力的高频电磁波,我们才称为射频(信号)。

    和基带一样,我们通常会把射频电路、射频芯片、射频模组、射频元器件等产生射频信号的一系列东东,笼统简称为射频。

    所以,我们经常会听到有人说:“XX手机的基带很烂”,“XX公司做不出基带”,“XX设备的射频性能很好”,“XX的射频很贵”……之类的话。

    基带送过来的信号频率很低。而射频要做的事情,就是继续对信号进行调制,从低频,调制到指定的高频频段。例如900MHz的GSM频段,1.9GHz的4GLTE频段,3.5GHz的5G频段。

    射频的作用,就像调度员

    之所以RF射频要做这样的调制,一方面是如前面所说,基带信号不利于远距离传输。

    另一方面,无线频谱资源紧张,低频频段普遍被别的用途占用。而高频频段资源相对来说比较丰富,更容易实现大带宽。

    再有,你也必须调制到指定频段,不然干扰别人了,就是违法。

    在工程实现上,低频也不适合。

    根据天线理论,当天线的长度是无线电信号波长的1/4时,天线的发射和接收转换效率最高。电磁波的波长和频率成正比(光速=波长×频率),如果使用低频信号,手机和基站天线的尺寸就会比较大,增加工程实现的难度。尤其是手机侧,对大天线尺寸是不能容忍的,会占用宝贵的空间。

    信号经过RF射频调制之后,功率较小,因此,还需要经过功率放大器的放大,使其获得足够的射频功率,然后才会送到天线。

    信号到达天线之后,经过滤波器的滤波(消除干扰杂波),最后通过天线振子发射出去。

    电磁波的传播

    基站天线收到无线信号之后,采取的是前面过程的逆过程——滤波,放大,解调,解码。处理之后的数据,会通过承载网送到核心网,完成后面的数据传递和处理。

    以上,就是信号大致的变化过程。注意,是大致的过程,实际过程还是非常复杂的,还有一些中频之类的都没有详细介绍。

    我把大致过程画个简单的示意图如下:

    怎么样,是不是相当于重温了一遍我们的《通信原理》?事实上,大家会发现,现实中的情况,和我们书本上的内容,还是有很大出入的。

继续阅读
电磁波究竟是如何传播的?一文搞懂麦克斯韦方程组

麦克斯韦方程组的出现,预言了电磁波的存在,也促使了一批批的科学家去探寻电磁波的奥秘,随着赫兹的电火花,开启了无线的大门。

射频电路设计常见问题盘点,还有老司机经验总结分享给你

在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。

Qorvo 亮相 ELEXCON 2020

随着 5G 的到来,市场对氮化镓器件的需求猛增。据市场调研公司 Yole Development 预测,全球 GaN RF 器件的市场规模到 2024 年将超过 20 亿美元,其中无线通信将占据绝大部分。而作为射频领域的专家,Qorvo 在这个领域也有着领先的优势。

高速ADC为啥有这么多不同的电源轨和电源域?

在采样速率和可用带宽方面,当今的射频模数转换器(RF ADC)已有长足的发展。其中还纳入了大量数字处理功能,电源方面的复杂性也有提高。那么,当今的 RF ADC 为什么有如此多不同的电源轨和电源域?

Qorvo设计峰会

聚焦5G、Wi-Fi 等射频和电源设计难题的系列在线研讨会