射频前端

分享到:

今天,我们将带大家认识一下 5G 的射频技术。


5G 愿景的真正实现,还需要更多创新。网络基站和用户设备(例如:手机)变得越来越纤薄和小巧,能耗也变得越来越低。为了适合小尺寸设备,许多射频应用所使用的印刷电路板(PCB)也在不断减小尺寸。因此,射频应用供应商必须开发新的封装技术,尽量减小射频组件的占位面积。再进一步,部分供应商开始开发系统级封装办法(SiP),以减少射频组件的数量——尽管这种办法将会增加封装成本。

 

系统级封装办法正在被用于射频前端,而射频前端包含基站与天线中间的所有组件。

 

一个典型的射频前端由开关、滤波器、放大器及调谐组件组成。这些技术设备的尺寸不断减小,并且相互集成度不断加大。结果,在手机、小蜂窝、天线阵列系统、Wi-Fi 等 5G 应用中,射频前端正在变成一个复杂的、高度集成的系统封包。

 

不管怎样,5G 愿景的实现都需要射频技术和封装技术的颠覆性创新。


氮化镓技术
氮化镓(GaN)是一种二进制 III/V 族带隙半导体,非常适合用于高功率、耐高温晶体管。氮化镓功率放大器技术的 5G 通信潜力才刚刚显现。氮化镓具有高射频功率、低直流功耗、小尺寸及高可靠性等优势,让设备制造商能够减小基站体积。反过来,这又有助于减少 5G 基站信号塔上安装的天线阵列系统的重量,因此可以降低安装成本。另外,氮化镓还能在各种毫米波频率上,轻松支持高吞吐量和宽带宽。

 

氮化镓技术最适合实现高有效等向辐射基站功率(EIRP),如图 4-5 所示。美国联邦通信委员会定义了非常高的 EIRP 限值,规定对于 28GHz 和 39GHz 频带,每 100MHz 带宽需要达到 75 dBm 功率。因此带来了哪些挑战?相关设备的搭建既要满足这些目标,又要将成本、尺寸、重量和功率等保持在移动网络运营商的预算范围内。氮化镓技术是关键;相比于其他技术,氮化镓技术在达到以上高 EIRP 值时,使用的元件更少,并且输出功率更高。

 

图 4-5:半导体技术与 EIRP 需求的适应性比较。

 

对于高功率基站应用,相比于锗硅(SiGe)或硅(Si)等其他功率放大器技术,在相同 EIRP 目标值下,氮化镓技术的总功率耗散更低,如图 4-6 所示。氮化镓减少了整体系统的重量和复杂性,同时还仍保持较低功耗,因此更适合塔上安装系统的设计。

 

氮化镓技术的部分重要属性:
可靠性与结实性:氮化镓的功率效率更高,因此降低了热量输出。氮化镓的带隙宽,能够耐受更高的工作温度,因此可以减少紧凑区域的冷却需求。由于氮化镓能够在塔上应用(例如:天线阵列系统)的高温条件下工作,因此可以不需要冷却风扇,以及 / 或者可以减少散热器的体积。历史上,冷却风扇由于其机械性质,一直是造成外场故障的首要原因。大型散热器不仅硬件本身构成重大成本,并且由于重量原因,还可能带来额外的人力成本。使用氮化镓可以让人们不再使用这些高成本的散热办法。

 

图 4-6:氮化镓减少了基站设计的复杂性,降低了成本。


低电流消耗:氮化镓降低了工作成本,产生的热量也更少。另外,低电流还有助于减少系统功耗和降低电源需求。再者,由于功耗降低,服务提供商也减少了运营支出。

 

功率能力:相比于其他半导体技术,氮化镓设备提供更高的输出功率。市场的发展趋势以及对于基站高功率输出的需求,更加有利于氮化镓技术的发展。

 

频率带宽:氮化镓拥有高阻抗和低栅极电容,能够实现更大的工作带宽和更高的数据传输速度。另外,氮化镓技术还在 3 GHz 以上拥有良好的射频性能,其他技术(例如:硅)在这个频率范围的性能却不佳。今天氮化镓模块和功率放大器提供的宽带性能,能够支持 5G 前所未有的带宽需求。

 

集成:5G 需要体积更小的解决方案,这促使供应商将大规模、包含多个技术的离散式射频前端,替换成单体式全面集成解决方案。氮化镓制造商开始抓住这个潮流,开发那些能够将收发链条整合到单一封装的全面集成解决方案。这进一步减少了系统的体积、重量和上市时间。

 

体声波滤波器技术
由于新增频带和载波聚合,再加上蜂窝通信必须与许多其他无线标准共存的事实,干涉问题比以往更加严重。要减少频带与标准之间的干涉,滤波器技术是关键。

 

表面声波滤波器和体声波滤波器具有占位面积小、性能优异、经济适用等优势,在移动设备滤波器市场上居于主导地位。


体声波滤波器最适合 1 GHz 至 6 GHz 的频段,表面声波滤波器最适合 1 GHz 以下的频段。因此,体声波的 5G“甜蜜点”是低于 7 GHz 的频段。体声波和表面声波能够减少 LTE、Wi-Fi、自动通信以及新的 7 GHz 以下 5G 频率的干涉,同时又能满足制造商严格的体积和性能标准。

 

对于智能手机设计者,5G 的推出对于电池寿命和主板空间又是一个挑战。随着每代产品推陈出新,集成的压力和缩小体积的压力不断增加。在较高频率下工作,意味着功率放大器效率降低,同时天线和线路的损耗增加。另外,5G 手机还需要增加射频开关,因此带来更多链路预算损失。(所谓“链路预算”,是指在电信系统中,从发送器经由电缆、走线等直至接收器,在这一过程中产生的所有增益与损失的总和。)

 

不出意外,从 4G 到 5G,手机里安装的滤波器数量急剧增加,如图 4-7 所示。载波聚合是滤波器数量增加的主要促成因素。随着全球载波聚合以及手机中标准和频带的数量越来越多,滤波器技术方兴未艾。另外,在载波聚合以及手机性能优化需求的驱使下,滤波器的复杂性也在增加。

 

图 4-7:智能手机与集成滤波器技术。

 

体声波技术的一项优势就是散热,如图 4-8 所示。如前所述,放大器功率的增加导致热量的增加。如果为补偿系统功率损耗或信号范围问题而增加放大器的功率,则发送滤波器产生的热量也将增加。该热量对滤波器的性能和工作寿命都有不利影响,并且会在衰减区域和传输频带造成频率偏移。体声波技术有助于减轻这一问题,因为 SMR 体声波滤波器(BAW-SMR)产生垂直热通量,有助于将热量导离设备。在高频率下,反射器层变得更薄,这更加有助于体声波谐振器的散热。

 

图 4-8:SMR BAW 滤波器功率处置方式。


射频技术、封装及设计
射频前端由多个半导体技术设备组成。众多的 5G 应用需要五花八门的处理技术、设计技巧、集成办法和封装办法,以满足各个独特用例的需求。

 

对于 5G 的 7GHz 以下频段,相应的射频前端解决方案需要创新封装办法,例如,提高组件排列的紧凑度;缩短组件之间的导线长度,以尽量减少损耗;采用双面安装;划区屏蔽;以及使用更高质量的表面安装技术组件等。


所有 5G 用例都需要射频前端技术。根据射频功能、频带、功率等级等性能要求,射频半导体技术的选择不尽相同。如图 4-9 所示,每个射频功能和应用分别对应多个半导体技术。这些应用需要五花八门的处理技术、设计技巧、集成办法和封装办法,以满足各个独特用例的特定需求。

 

图 4-9: 5G 射频通信技术。

继续阅读
Qorvo 的 2020 年回顾,以及对 2021 年的寄望

5G 时代下的射频前端,Qorvo 做的不单单只是“集成”那么简单,一方面 Qorvo 以集成为手段改善射频模块的性能,另一方面是解决这些产品在集成过程中所遇到的兼容性问题,或者是互扰的问题。Qorvo 在做集成的同时,还在优化着自己的工艺与技术,从而使产品拥有更好的性能。

GaN射频技术发展趋势

以5G为代表的Sub 6G通信射频系统非常复杂,尤其是那些需要使用高载波频率和宽频带的新技术,包括载波聚合、Massive MIMO等。为此,很多半导体公司在技术上全面开花希望利用先进的半导体工艺技术应对甚至引领新一代的通信技术需求。以ADI为例,该公司全面拥有GaN、GaAs和SiGe以及28纳米CMOS等完整工艺,努力打造更具高集成度、低功耗和低成本的整合系统解决方案。 然而,在下一步的5G系统部署以及高端测试应用和卫星及航天应用中,无疑以高带宽和大功率为优势的GaN是其中的佼佼者,正在进入许多应用

射频前端芯片:射频核芯,5G明珠

伴随着铸就新通信时代的5G全面拉开序幕,作为5G通信升级 “核芯”的射频前端芯片既迎来发展的重要机遇,也迎来行业革新的重大挑战。尤其是为适应5G带来的更高的载波频率、更宽的通信带宽、更高更有效率和高线性度的信号功率输出,射频前端芯片需要突破传统的革新,以芯片升级支撑通信时代变革。

Yole:2025年,GaN RF市场规模将超过20亿美元

日前,市场分析机构Yole Développement 发布了2020年第四季度复合半导体季度市场监测报告。据报告预测,截至 2025 年,GaN RF3器件市场整体规模将超过 20 亿美元。Yole进一步指出,在2019 年至 2025 年间,GaN RF的 CAGR为 12%。

射频前端模组,看这一篇就够了

射频前端(RFFE, Radio Frequency Front-End)芯片是实现手机及各类移动终端通信功能的核心元器件,全球市场超过百亿美金级别。过去10年本土手机的全面崛起,为本土射频前端产业的发展奠定了坚实的产业基础;而5G在中国的率先商用化,以及全球贸易环境的变化,又给本土射频行业加了两捆柴火。