天线罩结构的基础知识

分享到:

本文来自电子发烧友网
 
天线罩的开发和构建都很复杂。文中提及的数据仅是近似值。这些信息只能作为对该主题的初步了解,并不能替代必要的评估和测试。
 
雷达传感器由前端 (RFE)(具有天线结构的微波部件)和用于信号处理的元器件组成。前端是雷达的实际核心,因为它是天线发射和接收电磁信号的部位。为了解读收集到的信息,前端会将其转发给信号处理单元(图 1)。
0-1
为了保护雷达天线和电子元器件,传感器通常封闭在外壳中。这样可以保护 RFE,避免外部影响造成损坏或降低性能。由于具有穿透材料的能力,雷达往往还因为外形美观而受到青睐。这一方面尤其令产品设计师欣赏。
 
当谈到天线结构的这种保护壳时,雷达技术人员指的就是“天线罩”(radome)。这个词是 "radar"(雷达)和 "dome"(圆顶)两个词的组合。与 iSYS-6003 上的一样,圆顶形罩主要用于固定安装的大型雷达系统,例如飞机或船舶的雷达。
 
然而,工业或商业应用中采用的传感器和系统还需要防止机械或化学影响,以免损害天线功能。这些都是为了适用于天线,符合雷达波的特性。
 
此外,在设计天线罩时,使用正确的材料也至关重要。如果电磁波传播过程中遇到物体或人体,那么该物质的特性会影响传播。为了找到适用于天线罩的材料,务必要考虑它们遇到雷达波后的影响。
 
表 1 概述了各种材料对微波的吸收和反射特性,以及微波对这些材料的穿透力。
2
雷达波必须能够穿透天线罩。金属会对雷达传感器造成屏蔽。由于具有高反射特性,因此金属不适合放在天线前方。木镶板(通常有一定的残留湿度)也不适合,因为电磁波对它的穿透力有限。
 
聚苯乙烯等泡沫非常适合用作覆盖材料,甚至可以不经加工就直接包裹在天线上。但是,由于较低的稳定性和对化学物质的敏感性,在选择材料时,泡沫往往会落选。
 
因此,塑料是生产防护罩或外壳最常见的替代材料。但是,在设计天线罩时,设计人员必须考虑塑料的特性。这种材料越厚、越靠近天线,电磁波穿透得越少。
 
在使用黑色塑料的情况下,测量时可能会出现损耗,因为这种塑料通常含有碳。此外,无法排走的积水也会对前端的信息采集造成不利影响。塑料天线罩的后续处理,例如涂漆,也会对雷达天线的数据采集产生负面影响。
 
天线罩的尺寸和位置
 
在构建天线罩时,不仅是天线罩的材料选择,精准固定及其形状也非常重要。为了不限制其功能,必须考虑以下方面:
天线罩底面与天线之间的距离
天线罩材料的厚度
天线罩的形状(尽可能均匀)
 
这些因素决定了大部分的雷达波会被所构建的天线罩反射还是吸收。
 
适当的距离
 
天线罩各处到天线的距离均匀性极为重要。即使是细微的偏差,例如保护罩底部有一个小缺口,也会改变电磁波的传播。出于这个原因,倾斜的天线罩也会产生不利影响,因为它们可能会影响正常反射。圆端、凸耳、加强件或材料中的凹槽同样如此(图 2)。
3
为了确定正确、均匀的距离,以下条件适用:
如果到天线罩的距离恰好是波长的一半(或其倍数),则波的传播只会受到轻微干扰。
这意味着天线表面(波中心)必须平行于天线罩放置,且距离为 λ/2(或其倍数)。
在中心频率为 24.125 GHz(波长的一半约为 6.2 mm)时,最佳距离约为 6.2 mm。
 
适当的材料厚度
 
在这方面,可采用确定适当距离的相同原则:为使波的传播干扰最小化,天线罩应置于波长的一半处。同样,也必须根据波长的一半选择适当的天线罩材料厚度。
 
不过,还必须考虑天线罩材质改变波的方式(通过穿透材料)。这种改变对应于所用材料的电导率(介电函数 ε),会使波长缩短 √(εr) 倍。
 
例如,对于塑料,该介电常数介于 3 到 4 之间,但是实际上它变化很大。为了取得近似值,可以使用平均值 1.5 进行计算。然后,可以使用公式 λ/2√(εr) 计算材料的厚度。使用这些初始值得出的厚度为 4 mm。
4
要构建天线罩,必须对所用材料的成分和电磁波的传播有深入的了解。本文所提供的信息仅作为指导,旨在强调构建天线罩时绝对有必要考虑的事项。
继续阅读
后摩尔时代 , 从有源相控阵天线走向天线阵列微系统

本文围绕高分辨率对地微波成像雷达对天线高效率、低剖面和轻量化的迫切需求 , 分析研究了有源阵列天线的特点、现状、趋势和瓶颈技术 , 针对对集成电路后摩尔时代的发展预测 , 提出了天线阵列微系统概念、内涵和若干前沿科学技术问题 , 分析讨论了天线阵列微系统所涉及的微纳尺度下多物理场耦合模型、微波半导体集成电路、混合异构集成、封装及功能材料等关键技术及其解决途径 , 并对天线阵列微系统在下一代微波成像雷达中的应用进行了展望 。

合成孔径雷达的研究热点

合成孔径雷达 (Synthetic Aperture Radar),是利用合成孔径原理,实现高分辨的微波成像,具备全天时、全天候、高分辨、大幅宽等多种特点,最初主要是机载、星载平台,随着技术的发展,出现了弹载、地基SAR、无人机SAR、临近空间平台SAR、手持式设备等多种形式平台搭载的合成孔径雷达,广泛用于军事、民用领域。

5G网速为什么那么快?

无线网络要提升网速,主要靠下面4个武器:频率带宽、帧结构、调制编码、MIMO。5G当然也不例外。下文将以最常见的Sub6G频谱(小于6GHz的频谱)上100MHz载波带宽为例来计算5G能达到的峰值速率。

全面认识天线,你所不了解的知识!

从天线发展史和电磁波传播基础知识开始全面认识天线~

5G仿真解决方案 | 相控阵仿真技术详解

天线是移动通信系统的重要组成部分,随着移动通信技术的发展,天线形态越来越多样化,并且技术也日趋复杂。进入5G时代,大规模MIMO、波束赋形等成为关键技术,促使天线向着有源化、复杂化的方向演进。天线设计方式也需要与时俱进,采用先进的仿真手段应对复杂设计需求,满足5G时代天线不断提高的性能要求。