Qorvo 谈 5G 射频:持续整合加自屏蔽将成为大趋势

分享到:

本文来自Qorvo半导体
 
Qorvo 认为,射频前端模块的持续整合加上自屏蔽模块的应用将是未来射频前端的重要发展趋势。
1png
7 月 29 日,Qorvo 公布了截至 2020 年 6 月 27 日的 2021 财年第一财季(对应自然年为 2020 年 2 季度)业绩。财报显示,2021 财年第一季度营收为 7.87 亿美元,同比上升 1.53%,Qorvo 首席财务官表示,5G 的推出和公司的运营业绩促使季度业绩远超预期。财报会上,Qorvo 表示在移动产品方面正受益于更高的前端集成度和复杂性所推动的更多射频需求,包括转向更高的频率、增加新的频段组合以及采用双发射架构以支持 5G。
 
5G 使得通信行业迎来重大变革,通信频段数量从 4G 时代开始就处于快速增长的状态,其中射频前端作为手机通信功能的核心组件,将直接受益。在手机领域,虽然今年预计手机销量将下滑 10%,但 Qorvo 认为,5G 手机射频端 5-7 美元的价值量增长可以抵消手机销量下滑的负面影响。
2
从无线基础设施到移动设备,再到更为基础的氮化镓技术,Qorvo 掌握着射频领域核心技术。在射频前端领域,Qorvo 是如何布局的呢?
 
随着通信频段的增加,Qorvo 的高集成射频解决方案已经从移动通信射频技术第二阶段(Phase2)演进到了第七阶段(Phase7Lite),通过不断整合新部件以获取更多优势。
3
从分立器件到 FEMiD(集成双工器的射频前端模块,Front-End Module with Integrated Duplexer),再到 PAMiD(集成双工器的攻防模块,Power Amplifier Module with integrated Duplexer ),射频前端集成化的趋势愈加明显。
 
相较于 FEMiD,PAMiD 集成度高,可节省手机内 PCB 的空间,又因其集成模块多,所以系统设计变得更易上手。Qorvo 通过将 LNA(低噪声放大器)集成到 PAMiD 中,实现了 PAMiD 到 L-PAMiD(带 LNA 的 PA 模块)的转变,使得射频前端模块的节省面积达 35-40mm*2,且支持更多的功能,让 PCB 的布局更为合理。
 
在射频前端,产生 EMI (电磁干扰)和 RFI (射频干扰)是常见问题,而且随着越来越多元件集成到射频前端模块,这种现象会更为常见。目前业内一般采用外置机械屏蔽罩对射频模块实施屏蔽,即嵌入金属外壳,以保护模块免受外部电磁场的影响。但这种做法可能会导致灵敏度下降以及谐波升高,对设备造成损害,带来很多设计上的风险。
4
针对以上问题,Qorvo 研发自屏蔽模块,即在模块表面添加一层自屏蔽金属镀层,可使表面电流减少 100 倍,相当于其射频前端模块自带屏蔽罩,无需再思考机械屏蔽罩的放置问题。
5
Qorvo 自屏蔽模块的推出帮助客户在设计手机 PCB 模块的过程中,不用担心机械屏蔽罩在 L-PAMiD 中造成不必要的耦合。目前,该技术主要应用于苹果、三星等一些高端手机中。
 
Qorvo 认为,射频前端模块的持续整合加上自屏蔽模块的应用将是未来射频前端的重要发展趋势。虽然当下 PAMiD 方面的成本较高,但随着 5G 时代快速发展,采用 Qorvo 自屏蔽技术的 L-PAMiD 将会被更多厂商所接受,未来在中低端手机中也会得到普及。
 
从 Qorvo 分享的 PAMiD/L-PAMiD 产品路线图中可以看出,目前 Qorvo 的产品全部同时集成了自屏蔽和 LNA,并支持 5G 频段。Qorvo 曾在财报会上表示,在 Fusion 20 产品组合方面,其零件是通用的,可以与当今市场上的所有 5G 基带一起使用,客户可根据自身需求自由搭配模组。
6
Qorvo 耕耘多年的氮化镓(GaN)工艺在 5G 建设中也大放异彩,Qorvo 应用于 5G 的 GaN 功率放大器系列布很宽,可支持 5G 不同的频率、不同的功率水平,满足不同客户的需求,该财季 Qorvo 的氮化镓收入比去年同期翻了一番。
 
Qorvo 还透露,将在 2020 年第三季度对 5GHz 以及 6GHz 以下产品部署进行相当激进的升级,推出更多高度集成的模块,并将 BAW 滤波器作为示例纳入基础架构方面。
 
射频前端模块在 5G 通信中发挥着关键作用,根据 Yole Development 的统计与预测,2019 年射频前端市场为 167 亿美元,到 2022 年有望达到 221.75 亿美元。以市场份额来看,Skyworks 20%、村田 20%、Qorvo 19%、博通 19%,高通则依靠 5G 基带的优势在射频前端份额上升到3%。
 
在财报会上,Qorvo 表示,5G 正处于移动通信多年升级周期的早期阶段,预计全球范围 5G 基站部署将超过 4G 的初始部署,2020 年将部署超过 75 万个,到 2021 年将增长到超过 100 万个基站,终端方面,5G 手机 2020 年出货可望达到 2.5 亿部。这无疑为 Qorvo 本财年的业绩继续向好发展,打下了基础。
继续阅读
GFSK:窄带通信的频谱效率提升利器

GFSK是一种数字调制方式,广泛应用于无线通信系统,特别适用于需要高效频谱利用率和良好抗噪声性能的场合。它通过频率偏移将数字信息嵌入射频信号中,并使用高斯滤波器提高频谱利用率。GFSK因其低功耗、稳定可靠以及良好的抗噪声性能,在物联网设备、短距离无线通信、数据传输、射频识别以及频谱资源有限等场景中表现出色,成为无线通信领域的理想选择。

揭秘ASK调制技术:数字通信的振幅密码

ASK(振幅键控)是一种数字调制方式,通过改变载波信号的振幅来传递数字信息。在ASK中,数字信号的不同状态被映射为不同振幅的载波信号。ASK调制过程包括数字信号生成和载波振幅调制,而解调过程则是通过振幅检测还原原始数字信息。ASK实现简单、成本低,并具有一定的抗干扰能力,但频谱效率相对较低。

揭秘微放电效应:原理与影响探究(下)

微放电效应是在特定环境下发生的电子共振现象,对太空中的电子设备稳定性构成威胁。HFSS软件能仿真识别微放电部件,通过改进设计提升部件安全可靠性。该软件在卫星通信和雷达系统等高频段设备中,有助于预测和优化性能,避免微放电损害。未来,随着对微放电机理理解的加深和新材料技术的涌现,微放电控制将更加精准有效。

揭秘微放电效应:原理与影响探究(上)

微放电效应是在真空或接近真空环境下,两个金属表面或单个介质表面之间产生的一种谐振放电现象。该效应涉及电子的积累与加速、二次电子发射、电子雪崩等现象,并可能引发电磁干扰,对电子设备或系统造成损害。微放电的产生受多因素影响,包括电子渡越时间、射频场、器件结构缝隙、表面次级电子发射特性等。

LDO过冲影响揭秘:电路稳定性与元件安全的双重挑战(下)

LDO过冲对射频电路具有显著影响,包括输出电压稳定性下降、电路元件损坏风险增加、系统性能整体降低以及电源管理效率降低等。此外,LDO的设计和制造缺陷以及工作环境变化也可能导致过冲现象。未来,随着低功耗、高集成度和高性能应用的需求增长,LDO的设计将更加注重降低功耗、提高集成度以及优化性能稳定性。研究和发展方向将涉及先进的电路设计和优化技术,以应对日益复杂的电路应用场景。