5G 手机的发射功率,到底能有多大?

分享到:

本文来自Qorvo半导体
 
随着 5G 网络的建设,5G 基站成本高,尤其是能耗大的问题已广为人知。
 
以中国移动为例,为了下行支持高速率,其 2.6GHz 的射频模块就要求 64 通道,最大 320 瓦发射功率。
 
而与基站通信的 5G 手机,由于和人体的接触过于密切,「辐射危害」的底线必须严防死守,因此只能戴着镣铐起舞,发射功率严格受限。
 
4G 手机的发射功率,就被协议限制为最大 23dBm(0.2 瓦),这个功率虽说不大,但 4G 的主流频段(FDD 1800MHz)频率较低,传播损耗相对较小,用起来倒也问题不大。
 
5G 的情况就复杂一些。
 
首先,5G 主流的频段是 3.5GHz,频率较高,传播路损大,穿透能力差,同时手机能力弱,发射功率小,因此上行容易成为系统瓶颈。
 
再者,5G 以 TDD 模式为主,上下行是分时发送的。一般情况下,为了保证下行容量,分给上行的时隙较少,约占 30% 左右。也就是说,TDD 模式下的 5G 手机仅有 30% 的时间发送数据,这就进一步降低了平均发射功率。
 
并且,5G 的部署模式灵活,组网复杂。
 
在 NSA 模式下,5G 和 4G 通过双连接的方式同时发送数据,一般 5G 为 TDD 模式,4G 为 FDD 模式,如此一来,手机的发射功率应该为多大?
1
在 SA 模式下,5G 不但能以 TDD 或者 FDD 单载波发射,还可以把这两种模式的载波聚合起来,和 NSA 的情况类似,手机就要在两个不同频段,TDD 和 FDD 两种模式下同时发送数据,发射功率应该为多大呢?
2
另外,如果是 5G 的两个 TDD 载波聚合,手机发射功率又应该多大呢?
 
3GPP 考虑地很周到,为终端定义了多个功率等级。
 
在 Sub6G 频谱上,功率等级 3,大小为 23dBm;功率等级 2,大小为 26dBm;功率等级 1,理论上功率更大,目前还没有定义。
 
毫米波频段因频率高,传播特性和 Sub6G 不同,使用场景更多考虑固定接入或者非手机使用,标准为毫米波定义了 4 个功率等级,且对于辐射的指标限制较宽。
 
目前 5G 商用以 Sub6G 频段下的手机 eMBB 业务为主,下文将主要聚焦于此场景,针对主流的 5G 频段(如 FDD n1,n3,n8 等,TDD n41,n77,n78 等),分六种类型来描述。
 
5G FDD (SA 模式):最大发射功率为等级 3,即 23dBm;
 
5G TDD(SA 模式):最大发射功率为等级 2,即 26dBm;
 
5G FDD + 5G TDD CA(SA 模式):最大发射功率为等级 3,即 23dBm;
 
5G TDD + 5G TDD CA(SA 模式):最大发射功率为等级 3,即 23dBm;
 
4G FDD + 5G TDD DC(NSA 模式):最大发射功率为等级 3,即 23dBm;
 
4G TDD + 5G TDD DC(NSA 模式):R15 定义的最大发射功率为等级 3,即 23dBm,R16 版本可支持的最大发射功率为等级 2,即 26dBm。
 
通过上述 6 种类型,我们可以看出以下特点:只要手机的工作模式出现 FDD,则最大发射功率只能为 23dBm,而在独立组网 TDD 模式下,或者非独立组网 4G 和 5G 都是 TDD 
 
模式时,最大发射功率可以放宽到 26dBm。
 
那么,协议为什么对 TDD 如此关爱?
 
众所周知,无线通信对人体所造成的电磁辐射是否有害,业界一直众说纷纭,但为了安全起见,手机发射功率必须严格限制。
3
目前,各个国家和组织制定了相关的电磁辐射暴露健康标准,将手机的辐射严格限制在一个很小的范围内。只要手机遵守这些标准,就可以认为是安全的。
 
这些健康标准都指向了一个指标:SAR,专门用于手机等便携通信设备近场辐射对人体健康影响。
 
SAR 的全称是 Specific Absorption Ratio,中文意为「比吸收率」。其定义为「人体的一部分组织,平均一秒钟时间会吸收多少手机发出的电磁波能量」,单位为 W/kg。
4
中国的国标借鉴了欧洲的标准,明确规定:「任意 10 克生物组织、任意连续 6 分钟内的平均比吸收率(SAR)值不得超过 2.0W/kg」。
 
也就是说,这些标准评估的是一段时间内手机产生电磁辐射的平均值,短时间功率内高一点,但只要平均值不超标就问题不大。
 
如果在 TDD 模式和 FDD 模式最大发射功率均为 23dBm,但 FDD 模式的手机是一直在发射功率的,而 TDD 模式的手机一般只有 30% 的时间发射功率,因此 TDD 的总体发射功率要比 FDD 小约 5dB。
 
因此,给 TDD 模式的发射功率补偿 3dB ,正是在满足 SAR 标准的前提下,拉齐 TDD 和 FDD 之间的差异,它们最终平均下来的发射功率都可达到 23dBm。
5
5G 手机的发射功率到底有多大?看到这里,相信已经有了答案。
继续阅读
关于5G NR的最强科普!

NR,其全称为New Radio,也被称为新空口。 我们从名称中可大概一窥究竟。所谓“新空口”,包含了两个词:“新”和“空口”。由此引出了两个问题:什么是空口?新在哪里?

变废为宝,电话亭将变多功能5G基站?破解5G BBU集中机房建设难题,原来可以如此简单!

近日,新加坡电信称,位于乌节道唐楼的标志性公用电话亭已被改造为能够提供5G连接的下一代多媒体亭,提供24小时的Singtel服务和免费的5G WiFi,并播放Love Nature的独家4K内容。

5G时代,日本元器件厂商优势凸显!一种快速估算PCB走线电阻的方法:方块统计

第五代移动通信(5G)时代于2020年正式开启!2019年美国、韩国、欧洲、中国等国家相继开始5G的商用。日本也计划在2020年春季开始商用。这对为全球供给高信赖性零部件的日本电子零部件厂商来说是绝好的机会。不仅相继投产5G智能手机,而且5G基站也期待着以东京奥运会、残奥会为契机得以整备。

电信联通5G消息集采终止:价格太低,无人投标

电联的5G消息集采再次终止,这已经是第二次了。 为什么无人投标?前后两次招标,投标人资格预审,都不足3家参与,也就是说有可能是2家,也可能没有。只能说,预算真的很低,从第二次提高限价,联通甚至于要减少采购规模,可以看出在预算上确实已经控制得很严了。

GaN射频技术发展趋势

以5G为代表的Sub 6G通信射频系统非常复杂,尤其是那些需要使用高载波频率和宽频带的新技术,包括载波聚合、Massive MIMO等。为此,很多半导体公司在技术上全面开花希望利用先进的半导体工艺技术应对甚至引领新一代的通信技术需求。以ADI为例,该公司全面拥有GaN、GaAs和SiGe以及28纳米CMOS等完整工艺,努力打造更具高集成度、低功耗和低成本的整合系统解决方案。 然而,在下一步的5G系统部署以及高端测试应用和卫星及航天应用中,无疑以高带宽和大功率为优势的GaN是其中的佼佼者,正在进入许多应用