电磁波究竟是如何传播的?一文搞懂麦克斯韦方程组

分享到:

本文来自与非网
 
在之前的文章中,我们多次讲到了 Maxwell 方程组,有从纯数学角度的阐述,也有其产生背景的介绍。那么 今天我们再次介绍一下 Maxwell 方程组。 
1
麦克斯韦方程组的出现,预言了电磁波的存在,也促使了一批批的科学家去探寻电磁波的奥秘,随着赫兹的电火花,开启了无线的大门。我们今天的无线世界由此诞生。
 
虽然站在今天的角度看来,赫兹的电磁波实验,也仅仅是一个极近距离的收发实验,完全不足为奇,当时在当时的环境下,轰动了学术界。人们不得不停下来认真思考:电磁波到底是怎么传播的?
 
我们通过观察 Maxwell 方程组的前两项,再次旋度求解可以得到电磁波的波动方程。
2
波动方程: 
3
我们今天一起来学习一下这两个方程所蕴含的哲学思想。 
4
1, 这两个方程左侧为磁场 H 或者电场 E,右边为电流 J 或者磁通量 B,这中间的等号深刻解释了电和磁是相互转化,相互依赖,相互对立的存在于电磁波中。正是因为电不断的转化为磁,磁不断地转化为电,才产生了能量的交换和储存。 
5
这恰恰对应了奥斯特和法拉第的实验发现,我们知道,奥斯特的小磁针偏转实验揭示了电流周围存在着磁场,即电产生磁。而法拉第在经历了无数次的失败之后,意外拔出了磁铁,发现了电流计指针的晃动,证实了运动的磁场产生电场。电流又何尝不是运动的电荷呢?所以可以归纳为:电流长生磁,动磁产生电场。
 
这就为电磁波的出现提供了可能。但是电磁转化一定产生电磁波吗?答案是 No。一个简单的电磁振荡回路就没有电磁波的产生。 
6
为了便于理解,可以参照摆动问题中势能和动能的转化。如下图所示: 
7
2,我们接着观察这两个方程,方程的左边是空间的运算——场的旋度。方程的右边都是时间的函数——导数。时间和空间的关系依然是等号。这就深刻解释了电磁场的时空转化,即电 / 磁场在空间的变化,会产生磁 / 电时间上的变化。反过来,电 / 磁在时间上的变化也会转化成磁 / 电场的空间变化。正是这种时空转化构成了波动的外在形式。通俗来说,就是在某时某地出现的事物,过了一段时间又在另一个地方出现了。如下图所示: 
8
3,麦克斯韦方程还给出了电磁转换的一个重要条件,即角频率 w0. 在单色波频域下,我们把麦克斯韦方程可以写成: 
9
任何形式信号的高频分量包含角频率 w0,才能确保电磁的有效转换,直流情况下,虽然直流的周围也有磁场,但没有磁场到电场的转化。也就是因为角频率 w0 的存在,才使得射频电路里面分布参数的存在,电路有可能会有辐射电磁波的存在。频率越高,电路的辐射现象就越明显。但是有意思的是,频率越高,功率越难输出。 
10
4,我们接着观察方程组的右边,可以发现,第一个方程的右边有两项  E 和 J,而第二个方程的右边只有一项——jwuH,这就构成了麦克斯韦方程组的不对称性。尽管人们一直在寻找单磁极和磁流的存在,但到目前为止一直没有寻找到。 
 
宇宙就是这么神秘,她以一种极其完美的形式展现给大家,而细微的残缺却又让人穷追不舍,孜孜不倦。
继续阅读
电磁波究竟是如何传播的?一文搞懂麦克斯韦方程组

麦克斯韦方程组的出现,预言了电磁波的存在,也促使了一批批的科学家去探寻电磁波的奥秘,随着赫兹的电火花,开启了无线的大门。

射频电路设计常见问题盘点,还有老司机经验总结分享给你

在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。

Qorvo 亮相 ELEXCON 2020

随着 5G 的到来,市场对氮化镓器件的需求猛增。据市场调研公司 Yole Development 预测,全球 GaN RF 器件的市场规模到 2024 年将超过 20 亿美元,其中无线通信将占据绝大部分。而作为射频领域的专家,Qorvo 在这个领域也有着领先的优势。

高速ADC为啥有这么多不同的电源轨和电源域?

在采样速率和可用带宽方面,当今的射频模数转换器(RF ADC)已有长足的发展。其中还纳入了大量数字处理功能,电源方面的复杂性也有提高。那么,当今的 RF ADC 为什么有如此多不同的电源轨和电源域?

Qorvo设计峰会

聚焦5G、Wi-Fi 等射频和电源设计难题的系列在线研讨会