高压阻抗调谐快速指南

分享到:

本文来自Qorvo公众号
 
移动手机天线设计人员面临着许多挑战:不断增加频段覆盖范围的要求,极具挑战的行业设计限制以及不断缩小的天线安装空间。设计人员通过使用孔径和阻抗调谐器可以解决这些问题。然而,并不是任何孔径或阻抗调谐器都可以使用。当今的许多应用都需要使用更稳定、可靠的调谐产品,才能完全满足设计需求。 
 
File 5faa6ece93e74 from gallery
 
阻抗匹配与 RF 电压
 
设计人员经常要克服的一个挑战就是天线上的射频能源。例如,与天线匹配的阻抗可能会在匹配网络中生成较高的射频电压。当匹配电容或电感较高的阻抗时,匹配网络与天线之间可能会出现较大的差分电压。当使用额定电压更低的器件时,可能会降低系统性能。为消除这种性能下降问题,需要使用额定电压较高的阻抗匹配器件。为承受更高的射频电压,必须使用这些类型的阻抗匹配器件。图 1 展示了在较高 (GSM850/900) 功率水平下发射信号时,射频电压有多高。 
1
Figure 1.
 
天线阻抗详述
 
应用和天线设计等多方面因素都会影响天线的电压电平。其中包括以下三个因素:
 
1.匹配器件的天线阻抗可能会导致较高的电压
2.应用中的输入功率水平(即 2 级功率 (PC2) 或 GSM)
3.实际匹配器件的阻抗
 
我们考虑这三个因素,仔细了解一下如何利用天线方向图和天线调谐器来优化天线设计。 
 
深入了解阻抗匹配
 
阻抗匹配器件会影响功率水平,并且需要使用额定电压水平更高的器件来优化天线效率。
 
图 2 为两种天线设计,即模式 A 和 B。接下来,我们将阐述这些设计模式与不同额定电压的阻抗匹配组件会如何相互影响。我们还将介绍如何利用额定电压更高的器件来最大程度地提高总辐射效率。
2
Figure 2.
 
首先,在图 3 中我们可以看到,天线模式“A”和“B”在史密斯圆图上如何通过低频段 GSM 频率进行测量。如图所示,天线阻抗位于史密斯圆图的电感区域,因此串联电容成为最优匹配解决方案。因此,我们的天线匹配解决方案将使用电容。
3
Figure 3.
 
在我们的示例中,我们将图 4 左侧所示的两个类似器件作为天线阻抗匹配组件进行了测量和比较。一个是 55VRF (DEVICE55),另一个是 65VRF (DEVICE65)。每个器件都由具有 32 种不同电容状态的可编程电容和独立的可切换开关组成。
4
Figure 4. 
 
通过选择每个器件的状态,使天线模式 A 在低频段频率范围内实现最大辐射效率。此外,所选的器件状态还应符合每个器件的额定射频电压要求:DEVICE55 为 55VRF,DEVICE65 为 65VRF,如下图所示。器件在 GSM850/900 和 LTE B12(频段 12)下进行了测试。测量图(下图 5)为连接这两个器件的天线效率与频率图。
5
Figure 5. 
 
上述输出测量采用了 DEVICE 55 和 DEVICE 65 的天线模式“A”。如图所示,如果使用电压较低的 55 V 器件,在 GSM850 和 GSM900 Tx 频率下,效率会受到明显影响。为了在 GSM850、GSM900 以及 B12 下实现更高的效率,同时保持电压电平,应选择 DEVICE65 的电压,因为其效率会超过 DEVICE55。
 
为提高 DEVICE55 响应性能,我们尝试使用模式“B”天线设计。下述输出测量图显示了使用 DEVICE65 的模式“A”。对于 DEVICE55,我们使用了模式“B”。尽管在 GSM 频率下使用模式“B”天线设计可以改进 DEVICE55 方案的效果,但仍不足以达到 DEVICE65 组件的要求。如图 6 中所示,DEVICE65 的效率再一次超过了 DEVICE55。因为 DEVICE65 能够满足较高的射频电压输入阻抗要求。
6
Figure 6. 
 
此外,使用模式“B”和 DEVICE55 所实现的效率没有使用模式“A”和 DEVICE65 的那么高,频段也没有那么宽,尤其是在 B12 频率范围内。尽管使用模式“B”时,DEVICE55 会有所改进,但效率没有使用模式“A”和 DEVICE65 那么高。
 
总之,天线上的高电压的确会对效率和性能产生影响。我们的测量结果证实,在高射频电压的阻抗匹配应用中,额定电压更高的器件可实现更高的性能。在我们的示例中,我们采用 Qorvo 的两款可配置调谐器,每款调谐器都包含一个开关和一个可编程电容阵列 (PAC) ,一个器件的额定电压为 55V,另一个为 65V。额定电压更高的组件可为天线设计人员提供更多的裕量。从而使系统设计人员能够在不修改设计布局结构的情况下,更有效地将电路与多个天线模式和射频电压情境进行匹配。
继续阅读
天线馈电点技术的革新与应用展望

天线馈电点作为天线与馈线之间的关键交点,决定了天线的电磁波模式及阻抗匹配程度。在无线通信、雷达等领域,馈电点的精确设计确保信号有效传输。不同馈电方式各具优缺点,适用于不同场景。随着5G、6G等通信技术的普及,馈电点设计将更注重高效、稳定、可靠及小型化、集成化。多馈法技术将广泛应用,实现更宽带宽和复杂工作模式。

阻抗大一点好,还是小一点好?

在电路设计和信号传输过程中,输入输出阻抗是一个重要的概念。它影响着信号的传递质量和电路性能。但是,什么是输入输出阻抗?它为什么如此重要呢?在本文中,我们将深入探讨输入输出阻抗的定义、意义以及在电路设计中的应用。通过了解输入输出阻抗,我们可以更好地理解信号在电路中的通行要道。

NFC天线匹配:高效通信的关键技术(下)

NFC天线匹配技术涉及阻抗匹配与信号优化,旨在实现高效稳定的无线通信。通过设计阻抗匹配网络、调整天线频率及优化信号技术,提升通信性能。该技术还考虑实际应用需求,广泛应用于智能家居和防伪溯源等领域,为生活带来便利与可能性。

NFC天线匹配:高效通信的关键技术(上)

NFC天线匹配的核心在于实现天线与NFC模块之间的阻抗匹配,以优化能量传输和数据通讯。这涉及调整天线阻抗、谐振频率以及优化带宽和品质因数。先进的制造工艺和材料选择对于确保天线性能至关重要。NFC天线匹配在移动支付、门禁系统和智能公交等领域发挥关键作用,提升系统效率、安全性和便捷性。

天线极化:理论与应用探索

在电磁波的世界中,极化是一个至关重要的概念。它描述的是电磁波在其中振动的平面,对于天线而言,极化具有特殊的意义,因为它们对极化非常敏感,通常只能接收或发送具有特定极化的信号。因此,理解天线极化的理论基础并掌握其应用技巧,对于无线通信领域的从业者来说,是不可或缺的知识。