高压阻抗调谐指南

分享到:

移动手机天线设计人员面临着许多挑战:不断增加频段覆盖范围的要求,极具挑战的行业设计限制以及不断缩小的天线安装空间。设计人员通过使用孔径和阻抗调谐器可以解决这些问题。然而,并不是任何孔径或阻抗调谐器都可以使用。当今的许多应用都需要使用更稳定、可靠的调谐产品,才能完全满足设计需求。 
 
File 5faa6ece93e74 from gallery
 
阻抗匹配与 RF 电压
 
设计人员经常要克服的一个挑战就是天线上的射频能源。例如,与天线匹配的阻抗可能会在匹配网络中生成较高的射频电压。当匹配电容或电感较高的阻抗时,匹配网络与天线之间可能会出现较大的差分电压。当使用额定电压更低的器件时,可能会降低系统性能。为消除这种性能下降问题,需要使用额定电压较高的阻抗匹配器件。为承受更高的射频电压,必须使用这些类型的阻抗匹配器件。图 1 展示了在较高 (GSM850/900) 功率水平下发射信号时,射频电压有多高。 
1
Figure 1.
 
天线阻抗详述
 
应用和天线设计等多方面因素都会影响天线的电压电平。其中包括以下三个因素:
 
1.匹配器件的天线阻抗可能会导致较高的电压
2.应用中的输入功率水平(即 2 级功率 (PC2) 或 GSM)
3.实际匹配器件的阻抗
 
我们考虑这三个因素,仔细了解一下如何利用天线方向图和天线调谐器来优化天线设计。 
 
深入了解阻抗匹配
 
阻抗匹配器件会影响功率水平,并且需要使用额定电压水平更高的器件来优化天线效率。
 
图 2 为两种天线设计,即模式 A 和 B。接下来,我们将阐述这些设计模式与不同额定电压的阻抗匹配组件会如何相互影响。我们还将介绍如何利用额定电压更高的器件来最大程度地提高总辐射效率。
2
Figure 2.
 
首先,在图 3 中我们可以看到,天线模式“A”和“B”在史密斯圆图上如何通过低频段 GSM 频率进行测量。如图所示,天线阻抗位于史密斯圆图的电感区域,因此串联电容成为最优匹配解决方案。因此,我们的天线匹配解决方案将使用电容。
3
Figure 3.
 
在我们的示例中,我们将图 4 左侧所示的两个类似器件作为天线阻抗匹配组件进行了测量和比较。一个是 55VRF (DEVICE55),另一个是 65VRF (DEVICE65)。每个器件都由具有 32 种不同电容状态的可编程电容和独立的可切换开关组成。
4
Figure 4. 
 
通过选择每个器件的状态,使天线模式 A 在低频段频率范围内实现最大辐射效率。此外,所选的器件状态还应符合每个器件的额定射频电压要求:DEVICE55 为 55VRF,DEVICE65 为 65VRF,如下图所示。器件在 GSM850/900 和 LTE B12(频段 12)下进行了测试。测量图(下图 5)为连接这两个器件的天线效率与频率图。
5
Figure 5. 
 
上述输出测量采用了 DEVICE 55 和 DEVICE 65 的天线模式“A”。如图所示,如果使用电压较低的 55 V 器件,在 GSM850 和 GSM900 Tx 频率下,效率会受到明显影响。为了在 GSM850、GSM900 以及 B12 下实现更高的效率,同时保持电压电平,应选择 DEVICE65 的电压,因为其效率会超过 DEVICE55。
 
为提高 DEVICE55 响应性能,我们尝试使用模式“B”天线设计。下述输出测量图显示了使用 DEVICE65 的模式“A”。对于 DEVICE55,我们使用了模式“B”。尽管在 GSM 频率下使用模式“B”天线设计可以改进 DEVICE55 方案的效果,但仍不足以达到 DEVICE65 组件的要求。如图 6 中所示,DEVICE65 的效率再一次超过了 DEVICE55。因为 DEVICE65 能够满足较高的射频电压输入阻抗要求。
6
Figure 6. 
 
此外,使用模式“B”和 DEVICE55 所实现的效率没有使用模式“A”和 DEVICE65 的那么高,频段也没有那么宽,尤其是在 B12 频率范围内。尽管使用模式“B”时,DEVICE55 会有所改进,但效率没有使用模式“A”和 DEVICE65 那么高。
 
总之,天线上的高电压的确会对效率和性能产生影响。我们的测量结果证实,在高射频电压的阻抗匹配应用中,额定电压更高的器件可实现更高的性能。在我们的示例中,我们采用 Qorvo 的两款可配置调谐器,每款调谐器都包含一个开关和一个可编程电容阵列 (PAC) ,一个器件的额定电压为 55V,另一个为 65V。额定电压更高的组件可为天线设计人员提供更多的裕量。从而使系统设计人员能够在不修改设计布局结构的情况下,更有效地将电路与多个天线模式和射频电压情境进行匹配。
 
关于 Qorvo
 
Qorvo(纳斯达克代码:QRVO)长期坚持提供创新的射频解决方案以实现更加美好的互联世界。我们结合产品和领先的技术优势、以系统级专业知识和全球性的制造规模,快速解决客户最复杂的技术难题。
 
Qorvo 服务于全球市场,包括先进的无线设备、有线和无线网络和防空雷达及通信系统。我们在这些高速发展和增长的领域持续保持着领先优势。我们还利用我们独特的竞争优势,以推进 5G 网络、云计算、物联网和其他新兴的应用市场以实现人物、地点和事物的全球互联。
 
访问cn.qorvo.com,了解 Qorvo 如何创造美好的互联世界。 
 
Qorvo 是 Qorvo, Inc. 在美国和其他国家/地区的注册商标。
继续阅读
6G超小型天线发布 | 科普:天线的起源与发展历史

近年来,由于对无线通信的更高速率和更大容量的需求不断提高,全球范围内开始研究可实现100Gbps或更高传输速率的B5G / 6G移动通信技术。太赫兹无线电有望成为超高速无线通信系统的候选者,因为其具有比在5G中使用的毫米波频段更宽的频带。

为什么要阻抗匹配?怎么进行阻抗匹配?

为什么要阻抗匹配?怎么进行阻抗匹配? 本篇文章将会为您介绍什么是阻抗、阻抗匹配的理想模型、阻抗匹配的方法以及Smith圆图在RF匹配电路调试中的应用四个方面。

远端射频模块(RRU)关键技术创新及发展趋势,包括滤波器关键技术创新

远端射频模块(RRU)包含收发信机(TRX)、功放、射频(RF)算法、滤波器、天线五大专有关键技术方向。其中TRX主要聚焦高集成、低功耗、大带宽技术;功放及算法主要聚焦高效率低成本技术;滤波器主要聚焦小型化、轻量化技术;天线主要聚焦于天面简化、5G低频大规模多输入多输出(MIMO)、5G高频技术。本文同时详细说明了近十年来这些技术的发展趋势及创新。

天线设计和匹配网络

当谈到现实世界中的实际天线时,有很多知识都是经验性的。众所周知,这个领域有很多理论——有解释点电荷辐射方式的(麦克斯韦方程),有解释匹配需求的(微波理论),还有解释偶极子天线辐射方式的——但这些定律基本上都无法解决天线设计的实际问题。本文将从物理层面对无线电子设备如何工作分享一些直观认知,希望帮助读者更广泛地了解天线设计和匹配网络,并强调最佳实践的价值以及来之不易的学问。

利用天线复用器应对 5G 天线设计挑战

天线复用器可解决5G手机及其他设备制造商面临的一个关键问题:在分配给天线空间越来越小的情况下,如何适应急剧增加的射频复杂性。 通过利用天线复用器,制造商能够使用更少的天线满足新5G频段、4x4 MIMO和其他新要求,同时不会对现有外形尺寸或功能产生影响。