Qorvo 设计工具—— RF 项目的首选资源

分享到:

通信市场不断发展,开发的新产品比以往更加复杂。这些富有创造力的创新解决方案,需要依赖工程师来实现。Qorvo 深知这一点,将为您提供助力。我们的主要目标之一是为工程社区提供支持——帮助设计师将其解决方案快速成功地推向市场。为此,我们创建了设计工具库(https://www.qorvo.com/design-hub/design-tools)。该设计工具库旨在为您提供资源,帮助您简化设计流程并提高准确性。我们的所有工具都是免费的——部分工具可在线使用,其他工具可以下载。

 

1

 

这些工具旨在帮助工程师开发移动、基础设施和国防市场领域的应用。通过这些在线工具,用户可以在应用之间轻松切换,在关键的设计阶段获取所需数据。

 

下面简要描述目前通过 Qorvo 设计工具库提供的各项资源并提供相关链接。我们的目标是成为应用工程师的资源库,帮助他们改进 RF 设计流程并根据他们的需要尽快提供有用的信息。

精选设计工具

Qorvo MatchCalc

这款简单易用的 RF/微波匹配计算器能够与 S1P 和 S2P 文件轻松匹配。

 

2

 

Qorvo MatchCalc™ 是一款可下载免费使用的 RF/微波匹配计算器,旨在提供理想的可调谐无源组件值。该计算器可在 50 欧姆测试环境中显示输入和输出匹配的阻抗(网络分析仪上的测量值)。

 

部分关键特性包括

 

  • 显示 S1P 和 S2P 文件的插入损耗/增益

  • 实时优化和调谐

  • 曲线图标记

  • 通过快照功能保存静态曲线图

  • 工具上传输线计算器

  • 所有输入和输出端口的回波损耗曲线图

  • 支持在 Word 中创建匹配报告,以及显示输入源阻抗和输出负载的直通线功能。

 

 

Modelithics® Qorvo GaN 

Modelithics® Qorvo GaN 库中包含 Qorvo GaN 晶体管器件的高精度非线性仿真模型。

 

Qorvo 与 Modelithics® 合作,为设计师提供 Qorvo GaN 晶体管器件的高精度非线性仿真模型。双方利用一流的测量和建模技术开发出 Modelithics® Qorvo GaN 库。Modelithics® 因可提供基于测量的高精度高级功能仿真模型而闻名,同时还提供功能强大的基板元件值缩放功能,从而有助于进行高频设计。Modelithics® 模型库可与最新的电子设计自动化 (EDA) 仿真工具实现无缝集成,并提供模型信息数据表。

 

 

3 载波聚合最大功耗降幅计算器

可计算三个分量载波的最大功耗降幅的上行链路载波聚合工具。

 

4

 

LTE 用户设备的最大输出功率要求由 3GPP TS 36.521 规范定义,包含对最大输出功率和输出功率容差的要求。该计算器使您能够确定三个分量载波的最大功耗降幅。

 

 

2 载波聚合最大功耗降幅计算器

可计算两个分量载波的最大功耗降幅的上行链路载波聚合工具。

 

5

 

与上方计算器相似,该计算器使您能够确定两个分量载波的最大功耗降幅(而非三个)。

 

 

带通滤波器响应计算器

使用频率输入查看并分析 Butterworth 和 Chebyshev 滤波器性能。

 

6

 

该工具使用频率输入帮助分析 Butterworth 和 Chebyshev 滤波器响应。要使用该计算器,只需更改频率的上限和下限以及阶数。对于 Chebyshev 滤波器设计,输入单位为 dB 的纹波。当您移至另一个输入字段时,输出值和图表将自动更新,显示滤波器的响应。

 

 

级联计算器(有源/无源)

分析系统性能,包括小信号增益、噪声系数、1 dB 压缩点和输出 IP3。

 

7

 

该级联计算器为信号链中多达 20 个级联 RF 无源和有源组件提供系统级增益、噪声系数 (NF)、P1dB 压缩和输出 IP3 的性能值。

 

 

dBm - 伏特 - 瓦特换算

查看单位为 dBm、瓦特的功率与 RMS 电压之间的关系。这与很多功率应用相关。

 

8

 

设计 RF 电源电路时,了解给定功率输入的电压电平非常有用。该表显示在 50 欧姆系统中,单位为 dBm、瓦特的功率与单位为伏特、毫伏、微伏的相关电压(对于正弦信号,为峰值-峰值比)之间的关系。这适用于低功率和高功率应用。

 

 

噪声系数和噪声温度计算器

计算 RF 系统的噪声系数和噪声温度。

 

9

 

噪声系数和噪声温度可互换使用。噪声系数衡量信噪比 (SNR) 的降幅,这是由于发射或接收链中使用的 RF 和电子元件引起的。噪声系数以分贝 (dB) 为单位显示,表示可测量的放大器或 RF 接收器的性能。噪声温度是系统中组件的噪声功率。噪声温度与温度成正比,单位为开尔文。

 

 

PAD 衰减器计算器

根据阻抗和衰减输入提供 Pi 和 Tee 衰减器的电阻值。

 

该计算器帮助测量 Tee-pad、Pi-pad 和 Bridged-Tee 衰减器中电阻 R1、R2 和 R3 的值。用户只需输入要匹配的传输线的衰减(单位为分贝 (dB))和阻抗。

 

 

镜像抑制计算器

显示恒定镜像抑制与相位和幅度误差之间关系的等高线。便于用户查看最严重的误差项,有助于改进性能。

 

12

 

该镜像抑制计算器能够显示恒定镜像抑制与相位和幅度误差之间关系的等高线。用户输入具体误差条件后,程序计算镜像抑制,并将结果与等高线一同显示在图表中。直观的图表便于用户查看最严重的误差项,有助于改进性能。

 

 

RF 阻抗匹配计算器

计算 L 型匹配网络的电容和电感。此类计算器对于将一个放大器的输出与下一级的输入相匹配非常有用。

 

L 型匹配电路得名于像字母“L”的电路拓扑。利用该工具创建匹配电路,可确保在特定频率下的不匹配负载之间实现最优功率传输。该计算器可提供电路拓扑的输出数据和元件值。

 

 

走线宽度计算器(PCB 跟踪功率处理计算器)

使用 IPC-2221 (A) 公式计算走线宽度值

 

13

 

在 RF PC 电路板设计中,准确计算走线宽度非常重要。要确保所需直流电流可传输,且不会导致 PC 电路板过热或造成损坏,合适的走线宽度必不可少。通过提供电流、电路板厚度、温升、环境温度和走线长度等输入值,可以针对给定的电流和铜重量来计算内部和外部走线宽度层的估计值。

 

走线宽度设计工具以 IPC-2221 (A) 公式中的图表为基础。

 

 

VSWR/回波损耗转换

查看 VSWR 和回波损耗之间的关系。VSWR 值的范围为 1.01:1 至 3.5:1。

 

14

 

VSWR 表示电压驻波比,是用于确定传输线中驻波严重程度的指标。回波损耗用于衡量当信号反射回信号源时,有多少信号丢失。该在线转换表在 VSWR 和回波损耗之间转换,两个指标以不同的方式来衡量负载与信号源的匹配程度。

 

 

3GPP 关键频段

该表显示 3GPP LTE 和 5G FR1/FR2 频段、LTE 和 NR 带宽、昵称和区域。

 

15

 

受频谱需求的驱动,4G LTE 和 5G(即 FR1 和 FR2)频段不断增多,以获得更高的数据速率和容量。许多 FR1 和 FR2 蜂窝频段已在使用,其他的是即将引进的新频段。FDD 频谱需要成对的频段,一个用于上行链路,一个用于下行链路。TDD 需要单个频段,因为上行链路和下行链路的频率相同,但时间不同。该表提供 LTE 频段、新无线电 (NR) 频段、频率、LTE 通道带宽、NR 通道带宽、频段昵称和使用区域。

 

 

PAE/Pdiss/Tj 计算器

该计算器显示产品或应用的功率附加效率、功耗和最高结温。

 

PAE 是衡量 PA 效率的指标,考虑了放大器增益的影响。当放大器增益高时,PAE 效率将提高。

功耗是指电气设备产生热量的过程,热量是其主要操作的多余副产物。如果电路电流经过给定元件,在该过程中失去电压,则该电路元件的 Pdiss 是电流和电压的乘积 (P = I x V)。

结温是指电子设备中实际半导体的最高工作温度。

继续阅读
Qorvo 设计工具—— RF 项目的首选资源

这些工具旨在帮助工程师开发移动、基础设施和国防市场领域的应用。通过这些在线工具,用户可以在应用之间轻松切换,在关键的设计阶段获取所需数据。

Qorvo 设计工具——RF 项目的首选资源

通信市场不断发展,开发的新产品比以往更加复杂。这些富有创造力的创新解决方案,需要依赖工程师来实现。Qorvo 深知这一点,将为您提供助力。我们的主要目标之一是为工程社区提供支持——帮助设计师将其解决方案快速成功地推向市场。为此,我们创建了设计工具库。该设计工具库旨在为您提供资源,帮助您简化设计流程并提高准确性。我们的所有工具都是免费的——部分工具可在线使用,其他工具可以下载。

24GHz微带阵列天线设计经验

电平和更高的主瓣宽度,通过契比雪夫综合法设计了一款馈电网络,经过仿真和测试满足24GHz车载雷达天线的需要。24GHz; 低副瓣; 匹配网络;阵列天线。在大于10GHz的频段,PCB微带印刷天线相对于波导缝隙天线、透镜天线、反射面天线等其他天线具有明显优势。成熟的PCB加工工艺可以有效控制微带天线制作成本,天线板、射频板以及低频数模电路板的多层混压技术还使得整个射频系统具有很高的集成度。

射频电路板的五大设计技巧

射频电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。

RF无线射频电路设计中5年经验汇总

射频(RF)PCB设计,在目前公开出版的理论上具有很多不确定性,常被形容为一种“黑色艺术”。通常情况下,对于微波以下频段的电路(包括低频和低频数字电路),在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。对于微波以上频段和高频的PC类数字电路。则需要2~3个版本的PCB方能保证电路品质。而对于微波以上频段的RF电路.则往往需要更多版本的:PCB设计并不断完善,而且是在具备相当经验的前提下。由此可知RF电路设计上的困难。