5G无线帧结构详解

分享到:

5G无线帧基本架构

移动通信中,数据在无线网络上是以帧(Frame)为单位进行传输的,其实就是数据传输的时间单位而已。

q3.1

帧一般占用的时间很短,比如LTE一个无线帧才10ms,子帧更是仅有1ms,这样便可以实现1s内给多个用户的数据分配不同的子帧去传输数据,由于子帧切换非常快(LTE TTI=1ms)用户感觉自己是在实时传输。

与LTE相同,5G无线帧和子帧的长度固定,从而允许更好的保持LTE与NR间共存。不同的是,5G NR定义了灵活的子构架,时隙和字符长度可根据子载波间隔SCS灵活定义。

  • 无线帧=10(ms)
  • 子帧=1(ms)
  • 时隙=12/14个符号周期 (ms)
  • 符号周期=1/SCS +CP长度 (ms)

与4G LTE相比,5G NR支持多种不同类型的子载波间隔。5G采用u这个参数来表述载波间隔,比如u=0代表等同于LTE的15kHz,其他的各项配置如下图所示。

q3.2

根据公式 符号周期=1/SCS +CP长度,我们可以知道随着u的变化,符号周期成比例变化,相应的CP也成比例变化。即随着子载波间距的增大,时隙会变短。

  • 当NR SCS=15khz时,此时NR时隙=14个符号=1ms
  • 当NR SCS=30khz时,此时NR时隙=14个符号=0.5ms
  • 当NR SCS=60khz时,此时NR时隙=12/14个符号(12对应扩展CP,14对应普通CP)=0.25ms
  • 当NR SCS=120khz时,此时NR时隙=14个符号=0.125ms
  • 当NR SCS=240khz时,此时NR时隙=14个符号=0.0625ms

q3.3

与LTE 按子帧进行调度不同的是,时隙是NR的基本调度单位,更高的子载波间隔导致了更小的时隙长度,因而数据调度粒度就更小,更适合于时延要求高的传输。

(此外5G定义了一种子时隙构架,叫Mini-Slot。Mini-slots主要用于超高可靠超低时延(URLLC)应用场景。Mini-Slot由两个或多个符号组成,第一个符号包含控制信息。对于低时延的HARQ以及快速灵活的调度可配置于Mini-Slot上,Mini-Slot也可以用于模拟波束赋形以及非授权频谱的部署,目前仅一些5G终端支持Mini-Slot。)

当然并不是所有频段支持的SCS均相同,频段及支持的SCS如下:

q3.4

5G时隙配置

和LTE相比,NR子帧具有灵活性和多样性:NR中引入了灵活时隙的概念,可以针对不同的UE进行动态调整,可以调整到符号级别。NR中Slot类型更多,支持更多的场景和业务类型。

q3.5

时隙Slot基本构成:

  • Downlink,D,用于下行传输;
  • Flexible,X,可用于下行传输,上行传输以及GP(相当于LTE的特殊子帧S)
  • Uplink,U,用于上行传输

Slot类型

Type 1:全下行,DL-only slot,12/14个符号每个符号都用于下行

q3.6

Type 2:全上行,UL-only slot,12/14个符号每个符号都用于上行

q3.7

Type 3:全灵活资源,Flexible-only slot,每个符号灵活多变

q3.8

Type 4:至少一个上行或下行符号,其余灵活配置,有多种配置,如下:

q3.9

NR系统支持四级时隙配比的配置方案,依次从第一级到第四级,其中第一级和第二级采用半静态配置,在网管中配置后保持恒定,第三级和第四级可以实现动态配置也可以采用半静态配置。

第一级别:Cell-specificRRC信令半静态配置。

通过SIB1:UL-DL-configuration-common和UL-DL-configuration-common-Set2下发

第二级别:UE-specificRRC信令半静态配置

高层信令:UL-DL-configuration-dedicated中下发

第三级别:UE-groupSFI信令动态配置。在DCIformat2_0之中下发

第四级别:UE-specificDCI信令动态配置。在DCI format 0,1之中下发

q3.10

配置周期为:{0.5,0.625,1,1.25,2,2.5,5,10} ms

依赖于当前NR小区的SCS,如SCS=30khz,如果以10个时隙配置则配置周期为5ms,如果10个时隙中前5个和后5个时隙配置完全一致,则可以按5时隙配置,周期为2.5ms。总结:0.625ms仅用于120kHzSCS,1.25ms用于60kHz及以上SCS;2.5ms用于30kHz及以上SCS;5ms用于15kHz及以上SCS,10ms仅用于15khz。

需要注意的是配置周期中存在奇怪的几种配置,0.5ms、1ms以及2ms。这三种采用的是8个时隙配置一次。

当前主流时隙配置

当然目前NR时隙配置和LTE类似主要采用半静态配置,主流配置有以下四种:

q3.11

覆盖对比

协议定义C-bandSSB最大数目为8,SSB在无线帧中的时域位置已确定

协议定义一个SSB周期内的所有波束要在5ms内发完:为支持最大7~8个SSB波束,建议连续4个下行或下行为主的slot

q3.12

时延对比

q3.13

四种候选帧结构上下行均可以满足ITU定义的空口单向4ms指标;Case1/2/3三种帧结构E2E时延差别较小;8:2 E2E时延相对较大(增加25%)

容量对比

q3.14

Case1/4下行容量能力最强,Case2/3下行容量能力差;Case2上行能力最强;Case3的GP开销最大。

来源: 5G新技术

 

继续阅读
颠覆还是疯狂?与公有云巨头合建5G网络

几天前,美国第四大移动运营商Dish与全球公有云第一巨头亚马逊宣布,双方将通过AWS公有云基础设施托管5G核心网和无线接入网(RAN),以提供5G公网和5G专网服务。

12个问题带你全面认识5G

今天我们一起来学习一下高通Qualcomm关于5G这这篇博文,重新认识一下5G。通过这12个问题,全面认识5G。

未来几年会出现哪些GaN 创新技术?

现在GaN很火 ,人们似乎忘记了GaN 依然是一项相对较新的技术,仍处于发展初期,还有较 大的改进潜力和完善空间。本文将介绍多项即将出现的 GaN 创新技术,并预测未来几年这 些创新技术对基站设计和发展的影响。

5G高频天线技术探讨

Massive MIMO 天线技术是5G的核心,中兴通信在2017年发表了一篇关于《5G高频天线技术探讨》的文章,作者是赵俊飞,田 珅,戴佳伟,钟坤静,文章详细介绍了5G的一些天线技术。有幸在网络中搜索到了这篇文章,转发分享给大家,一起来学习。

煤矿井下5G覆盖数据分析

2020年5GtoB显著加速,垂直行业逐渐成为5G的重要用户,并深入参与到5G网络能力的验证工作,以考察5G是否满足行业的需求。在测试中,由于业务需求不统一、测试场景单一、未考虑设备厂家能力等因素,造成了行业用户对5G网络能力的认知上的差异。本文针对井工煤矿5G的覆盖能力、业务需求和网络规划进行了定量定性的分析,为5G在煤矿的网络规划提供了一定的参考。