看完这篇才知道射频功率测试,就是这么简单

分享到:

自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,知道今天这依然是个热门话题。无论是在实验室,产线上还是教学中,功率测量都是必不可少的。

在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。例如,连续波(如图 1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图 2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。

2.1

而现在,特别是 20 世纪 90 年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。因为数字调制信号(如图 3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。为了描述这类信号的特征,引入了一些新的描述方法,如领道功率,突发功率,通道功率等。很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。

2.2

下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事——在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为 W,mW,dBm。

频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。

同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。

射频功率的测量方法:

  • 频谱分析仪测量
  • 吸收式功率测量
  • 通过式功率测量

1、频谱分析仪测量

频谱分析仪(以下简称频谱仪)是一种基础的频域测试测量仪器,图 4 为采用数字中频技术频谱仪的基本工作原理。被测信号经过低通滤波器后进入混频器,与同时进入混频器的本地振荡器信号进行混频。由于混频器是非线性器件,所以会产生互调信号,落入滤波器的信号经过 ADC,再依次进入中频滤波器,包络检波器,视频滤波器,视频检波器,最后将轨迹显示在屏幕上。

在进行射频功率参数测量时,频谱仪具有以下特点:

1)频谱仪可以测量极小幅度的射频信号,这取决于频谱仪的一项关键指标 -DANL(Displayed Average Noise Level),中文“显示平均噪声电平”,例如 RIGOL 公司 DSA875 该指标可达 -161dBm/Hz,图 5 为 DSA875 测量一个频率 999MHz,功率 -130dBm 的信号结果,信号清晰可见,这是任何功率计所望尘莫及的。

2.3

2)频谱仪有很大的幅度测量范围,可以从 DANL 到安全输入电平+20 dBm 甚至+30dBm,动态范围可达 190 dB!而目前市面上功率计最大动态范围基本上都在 100 dB 以内,如:

德国某公司 NRP8S: –70 dBm 到+23 dBm

美国某公司 U2041XA: –70 dBm 到+26 dBm

3)频谱仪可以测量信号的频率分量,并且可以进行窄带测量。例如 RIGOL 公司的 DSA875 具备的信道功率与领道功率等高级测量功能,如图 6,图 7。

2.4

2、吸收式功率测量

吸收式功率计是常用的微波与射频功率测量设备,其工作原理如图 8(二极管检波器功率计)所示。被测信号首先进入功率计,功率计电路可采用热敏电阻,热电偶或二极管检波器等不同方式构成,功率计内部由 3 路测量通道组成,分别测量不同功率大小的信号,经过数字处理后将功率值显示到功率计主机或是电脑软件中,现在越来越多的显示部分采用软件来实现(如图 9)。

2.5

吸收式功率计有以下特点:

  1. 在常见的微波与射频功率测量仪器中,吸收式功率计的幅度测量精度是最高的;
  2. 动态范围一般不会超过 100 dB;
  3. 不能测量大功率,通常测量上限在+30 dBm(1 W)左右,如果需要扩展测量范围,则需要外衰减器;
  4. 可以测量各种调制信号的平均功率、峰值功率、突发功率、脉冲宽度、上升 / 下降时间;
  5. 不能像频谱仪一样测量信号的频率分量;
  6. 不能测量 VSWR。

鉴于吸收式功率计的这些特点,其作为实验室校准设备,用来校准信号源和频谱仪的应用较多。

3、通过式测量

通过式功率测量是对吸收式功率测量法的一种扩展应用,解决了吸收式功率计测量大功率和 VSWR 的局限性。通过式功率测量最大的意义就是可以测量放大器或发射机在大功率状态下与负载的匹配。提到通过式功率计,很多人会联想到一个产品——Bird 43(图 10),由 Bird 公司 1952 年发明,至今仍在生成与应用。

2.6

通过式功率计的核心器件是定向耦合器,通过测量通过功率计的正向功率与反射功率计算出 VSWR,这种测量方法有以下特点:

  1. 通过式功率计具有大功率测量能力;
  2. 不能测量幅度很小的功率;
  3. 通过式功率计受到定向耦合器的带宽限制,测量带宽相对频谱仪与吸收式功率计要小很多;
  4. 通过式功率计可以测量发射机与负载(天线)之间的大功率匹配。

通过本文的介绍可见,在射频功率测量中,频谱仪在灵活性,适用范围具有先天的优势,吸收式功率计精度最高,通过式功率计则更偏向于大功率信号测量。

来源: 射频学堂

继续阅读
射频大揭秘!三部曲带你读懂“射频芯”!

射频即Radio Frequency,通常缩写为RF。表示可以辐射到空间的电磁频率,频率范围从300KHz~30GHz之间。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。

图文解说S参数(进阶篇)

S参数是SI与RF领域工程师必备的基础知识,大家很容易从网络或书本上找到S,Y,Z参数的说明,笔者也在多年前写了S参数 -- 基础篇。但即使如此,在相关领域打滚多年的人, 可能还是会被一些问题困扰着。你懂S参数吗? 请继续往下看...

Qorvo 宣布增加 RF Fusion20 模块供货量,以满足手机厂商缩短 5G 智能手机设计周期的迫切需求

高级前端模块支持所有主要的 5G 频段和芯片组,提供优异的集成和 RF 屏蔽性能,可提高性能并加快产品上市。

一文看懂5G射频的“黑科技”

手机,作为移动互联网时代的标配,已经走进了我们每个人的生活。有了它,我们可以随心所欲地聊天、购物、追剧,享受美好的人生。 正因为手机如此重要,所以人们对相关技术的发展十分关注。每当有新品发布,媒体会进行长篇累牍的报道,社交网络上也会掀起热烈的讨论。 然而,人们对手机的关注,往往集中在CPU、GPU、基带、屏幕、摄像头上。有那么一个特殊的部件,对手机来说极为重要,却很少有人留意。

RF滤波器到底有多重要

移动无线数据和 4G LTE 网络的快速增长导致了对新频段以及通过载波聚合来组合频段的需求不断增长,以容纳无线流量。3G 网络只使用了大约五个频段,LTE 网络现在使用的频段有 40 多个,随着 5G 的到来,频段的使用数量还会进一步增加。