梦里“电感”知多少?—— 一文详述电感基础

分享到:

当写完《射频集成电路及系统设计》第一课电容基础时,就开始着手电感基础的文章。对于电感,突然感觉不知道怎么去描述了?

  • 到底什么是电感?
  • 为什么叫做电感?
  • 电感的特性是什么?
  • 为什么能够“通直流,阻交流”?

很熟悉,却不知从何下手。就像朋友留言中所述,有些很熟悉的知识,理论,当你要写出来,真的很难。这个从侧面也印证了“费曼学习法”的有效性。

因此这篇文章就搁下了,直接跳过第一章,去了第二章关于傅里叶变换的部分。这一周在网络上搜集了很多关于电感的知识去复习,也买了一本关于中学物理的教材,今天拾笔,我们一起来完成这个电感基础,解答上文的那些疑问。

4.1

电容这个概念很容易理解,简单来说就是电荷的容量,它的特性我们也很容易去解释:通交流,阻直流。两块金属板没有接触,直流当然过不去了,当频率升高时,电流就成了电磁波,长了翅膀就可以飞过去了。

但是电感到底是什么呢?电感就是电流的感应。电流的感应是什么呢?奥斯特的实验告诉我们,电流周围会产生磁场使小磁针发生旋转。这个磁场就是感应磁场。

4.2

那有感应磁场就是电感了吗?No. 只有感应磁场也形成不了电感。但是不要忘记还有一个重要的发现,法拉第电磁感应实验:当在磁场在线圈中变化时,会产生感应电流。

4.3

下面这幅动图更生动形象的解释了这个现象。

4.4

在《麦克斯韦方程组竟然这么简单?!》我们介绍了这项发现的重大意义:发电机、电动机的出现直接引发了第二次工业革命,人类进入了电气时代。

4.5

电流生磁,动磁生电,这就是最美的公式“麦克斯韦方程组”最关键的部分,麦克斯韦预测了电磁波的存在,而这项伟大的发现直接改变了我们的生活,带领人类进入无线时代。

而这两种电磁现象也就构成了电感的物理基础,当电流变化时(交流电),产生的感应磁场也随着变化,有感应磁场变化产生感应电流。根据楞次定律,这个感应电流的方向刚好和原电流方向相反,所以也就产生了阻碍电流的效果。

4.6

为了更有效地说明这一现象,我们用最常见的螺旋线圈电感作为参考。

4.7

当电流在线圈中流动时,根据电生磁的原理,在线圈中会产生磁场,并且磁场向周围蔓延,当线圈中电流变化时,产生的磁场也在变化,相当于线圈在做切割磁场的运动,根据磁生电的原理,这个变化的磁场又会产生感应电流,根据楞次定律,感应电流产生的磁场又会阻碍原电流产生的磁场的变化。

这种阻碍作用就产生了个神奇的效果,电感上的电流不能发生突变,就如同电容上的电压不能发生突变一样。在电感中,电流的变化会滞后于电压变化,如下图所示。滞后多少呢?看那个直角关系,我们就能得到90°,这个滞后值。

4.8

上文从感性角度对电感特性进行了描述,那么理论上到底是不是这样子的呢?

我们先来看看电感的电压方程:

4.9

这个电流相位之后90°是从哪里来的呢?根据前面介绍的傅里叶变换,任何一个信号都可以表示成正弦曲线的傅里叶级数形式,简便起见,我们假设电路中电流为:

4.10

那么电压就是:

4.11

上面公式中的90度,就是为什么电感中电流滞后电压90°的原因。

对电感感觉枯燥难写的另一个原因是电感的单位。我们知道电容的单位法拉F就是为了纪念伟大的法拉第先生,但是电感的单位亨利H,为了纪念谁呢?约瑟夫 亨利 先生,这位被认为是继富兰克林之后美国最伟大科学家,我们大家可能都觉得有些陌生。约瑟夫亨利发明了继电器,比法拉第更早的发现了电磁感应现象,只是没有及时去申请专利,所以电磁感应就让给了法拉第,但是后人却把电感这个最代表电磁感应定律的单位给了亨利。生的早就是这么重要,如果早生个两百年,能不能给小木匠一个电学单位,比如1木电感。

电容电感电阻构成了电路的最基本的元器件,到此为止,我们基本上介绍完了。但是其中奥妙,不是这一篇文章能够说的透的。反复咀嚼,也许能理解的更透彻。

来源: 射频学堂

继续阅读
射频大揭秘!三部曲带你读懂“射频芯”!

射频即Radio Frequency,通常缩写为RF。表示可以辐射到空间的电磁频率,频率范围从300KHz~30GHz之间。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。

梦里“电感”知多少?—— 一文详述电感基础

电容这个概念很容易理解,简单来说就是电荷的容量,它的特性我们也很容易去解释:通交流,阻直流。两块金属板没有接触,直流当然过不去了,当频率升高时,电流就成了电磁波,长了翅膀就可以飞过去了。 但是电感到底是什么呢?电感就是电流的感应。电流的感应是什么呢?奥斯特的实验告诉我们,电流周围会产生磁场使小磁针发生旋转。这个磁场就是感应磁场。

SAW滤波器基础——声波和电磁波到底有什么区别?

声波需要借助各种介质进行向四面八方传播,声波所到之处的质点沿着传播方向在平衡位置附近振动,声波的传播实质上是能量在介质中的传递。这种由物体振动产生的波叫做机械波。像水波,地震波等都属于机械波。

详解射频元件之电容

今天我们开始一起来学习一下第一章的内容:射频元件,这里介绍的射频元件主要包括射频电感和电容以及由其做成的LC谐振回路。

水下通信技术最新研究进展及未来展望

潜艇、无人潜航器的应用在战争中具有重要甚至决定性意义,俄罗斯近年来不断搁置航母发展,但始终没有减弱战略核潜艇的投入力度,新型的“北风之神”型潜艇是支撑其实现军事战略的重要依托。由于水下环境不同于大气条件,且复杂多变,水下通信一直以来都是困扰各国海军的现实难题,一般国家只能实现100米深度、Kb级、间歇性的传输能力,严重制约了潜艇的情报获取、指挥控制和通信传输。