射频电路设计简述 射频电路设计的常见问题及经验总结

分享到:

一、什么是射频电路
 
射频简称RF,射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于1000次的称为高频电流,而射频就是这样一种高频电流。
 
射频电路指处理信号的电磁波长与电路或器件尺寸处于同一数量级的电路。此时由于器件尺寸和导线尺寸的关系,电路需要用分布参数的相关理论来处理,这类电路都可以认为是射频电路,对其频率没有严格要求,如长距离传输的交流输电线(50或60Hz)有时也要用RF的相关理论来处理。
射频电路
典型射频电路方框图
 
这是一个无线通信收发机的系统模型,它包含了发射机电路、接收机电路以及通信天线。这个收发机可以应用于个人通信和无线局域网络中。在这个系统中,数字处理部分主要是对数字信号进行处理,包括采样、压缩、编码等;然后通过AD转换器转换器变成模拟形式进入模拟信号电路单元。
 
二、射频电路原理
 
射频电路原理分三个部分,首先是接收电路的结构和工作原理,然后发射电路的结构和工作原理,最后本振电路的结构和工作原理。
 
接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息。送到逻辑音频电路进一步处理。
 
射频电路原理
 
电路结构:接收电路由天线、天线开关、滤波器、高放管、中频集成块等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调。
 
发射时,把逻辑电路处理过的发射基带信息调制成的发射中频,把发射中频信号频率上变为GSM的频率信号。经功放放大后由天线转为电磁波辐射出去。
 
射频电路原理
 
电路结构:发射电路由中频内部的发射调制器、发射鉴相器;发射压控振荡器、功率放大器、功率控制器、发射互感器等电路组成。
 
而本振电路产生四段不带任何信息的本振频率信号;送入中频内部,接收时,对接收信号进行解调;发射时,对发射基带信息进行调制和发射鉴相。
 
射频电路原理
射频电路原理
 
手机本振电路有四种电路结构:
 
A,由频率合成集成块、接收压控振荡器、基准时钟、预设频率参考数据组成。
 
B,把频率合成集成块集成在中频内部,结合外接、接收压控振荡器组成。
 
C,把频率合成集成块、接收压控振荡器集成一体,称本振集成块或本振舐IC。
 
D,把频率合成集成块、接收压控振荡器集成在中频内部。
 
射频电路原理
射频电路原理
 
值得注意的是:无论采用何种结构模式,只是产生的频率不同;其工作原理,产生的频率信号的走向和作用都一样的。
 
三、射频电路的原理及发展
 
射频电路最主要的应用领域就是无线通信,图1为一个典型的无线通信系统的框图,下面以这个系统为例分析射频电路在整个无线通信系统中的作用。
 
这是一个无线通信收发机(tranceiver)的系统模型,它包含了发射机电路、接收机电路以及通信天线。这个收发机可以应用于个人通信和无线局域网络中。在这个系统中,数字处理部分主要是对数字信号进行处理,包括采样、压缩、编码等;然后通过A/D转换器转换器变成模拟形式进入模拟信号电路单元。
 
模拟信号电路分为两部分:发射部分和接收部分。发射部分的主要作用是:数- 模转换输出的低频模拟信号与本地振荡器提供的高频载波经过混频器上变频成射频调制信号,射频信号经过天线辐射到空间中去。接收部分的主要作用是:空间辐射 信号经过天线耦合到接收电路中去,接收到的微弱信号经过低噪声放大器被放大后与本地振荡信号经过混频器下变频为包含中频信号分量的信号。滤波器的作用就是 将有用的中频信号滤出来后输入模-数转换器转换成数字信号,然后进入数字处理部分处理。
 
图1以TriQuint公司的TGA4506-SM为例,给出了这个放大器的电路板图,注意到输入信号是通过一个经过匹配滤波网络输入放大模块。放大模块一般采用晶体管的共射极结构,其输入阻抗必须与位于低噪声放大器前面的滤波器的输出阻抗相匹配,从而保证最佳传输功率和最小反射系数,对于射频电路设计来说,这种匹配是必须的。此外,低噪声放大器的输出阻抗必须与其后端的混频器输入阻抗相匹配,同样能保证放大器输出的信号能完全、无反射的输入到混频器中去。这些匹配网络是由微带线组成,在有些时候也可能由独立的无源器件组成,但是它们在高频情况下的电特性与在低频的情况下完全不同。图上还可以看出微带线实际上是一定长度和宽度的敷铜带,与微带线连接的是片状电阻、电容和电感。
 
射频电路的原理及发展
图1 TGA4506-SM电路版图
射频电路的原理及发展
图2 用于个人通信终端的低噪声放大器电路板图
 
在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
 
在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波称为射频,英文缩写:RF。
 
高频电路基本上是由无源元件、有源器件和无源网络组成的。高频电路中使用的元器件与低频电路中使用的元器件频率特性是不同的。高频电路中无源线性元件主要是电阻(器)、电容(器)和电感(器)。
 
在电子技术领域,射频电路的特性不同于普通的低频电路。主要原因是在高频条件下,电路的特性与低频条件下不同,因此需要利用射频电路理论去理解射频电路的 工作原理。在高频条件下,杂散电容和杂散电感对电路的影响很大。杂散电感存在于导线连接以及组件本身存在的内部自感。杂散电容存在于电路的导体之间以及组件和地之间。在低频电路中,这些杂散参数对电路的性能影响很小,随着频率的增加,杂散参数的影响越来越大。在早期的VHF频段电视接收机中的高频头,以及通信接收机的前端电路中,杂散电容的影响都非常大以至于不再需要另外添加电容。
 
此外,在射频条件下电路存在趋肤效应。与直流不同的是,在直流条件下电流在整个导体中流动,而在高频条件下电流在导体表面流动。其结果是,高频的交流电阻要大于直流电阻。
 
在高频电路中的另一个问题是电磁辐射效应。随着频率的增加,当波长可与电路尺寸12比拟时,电路会变为一个辐射体。这时,在电路之间、电路和外部环境之间会产生各种耦合效应,因而引出许多干扰问题。这些问题在低频条件下往往是无关紧要的。
 
随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统 (GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变 小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。通常这些电路的工作频率都在1GHz以上,并且随 着通信技术的发展,这种趋势会继续下去。但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。
 
四、射频电路如何布局
 
1.尽可能地把高功率RF放大器和低噪音放大器隔离开来,简单地说,就是让高功率RF发射电路远离低功率RF接收电路
 
2.确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜箔面积越大越好。
 
3.电路和电源去耦同样也极为重要。
 
4.RF输出通常需要远离RF输入
 
5.敏感的模拟信号应该尽可能远离高速数字信号和RF信号。
 
五、射频电路的应用
 
RF(Radio Frequency)技术被广泛应用于多种领域,如:电视、广播、移动电话、雷达、自动识别系统等。专用词RFID(射频识别)即指应用射频识别信号对目标物进行识别。RFID的应用包括:
 
●ETC(电子收费)
 
● 铁路机车车辆识别与跟踪
 
● 集装箱识别
 
● 贵重物品的识别、认证及跟踪
 
● 商业零售、医疗保健、后勤服务等的目标物管理
 
● 出入门禁管理
 
● 动物识别、跟踪
 
● 车辆自动锁死(防盗)
 
射频频段频段的主要应用领域有:
 
卫星通信与卫星电视广播
双边带广播系统(DBS-Direct Broadcast System)
 
C波段 :4/6GHz,下行4 GHz,上行6 GHz
 
Ku波段:12/15GHz,下行12GHz,上行15GHz
 
卫星间通信:36GHz
 
微波中继通信
干线微波:2.1GHz,8GHz,11GHz
 
支线微波:6GHz,8GHz,11GHz,36GH
 
农村多址(一点多址):1.5GHz,2.4GHz,2.6GHz
 
雷达、气象、测距、定位
雷达远程警戒:P,L,S,C
 
精确制导:X,Ka
 
气象:1.7 GHz,0.1375GHz
 
汽车防撞、自动记费:36 GHz,60GHz
 
防盗:9.4 GHz
 
全球定位:1227.60MHz和1575.42MHz
 
射电天文:36GHz, 94GHz, 125GHz;
 
计算机无线网:2.5 GHz, 5.8 GHz, 36GHz。
 
六、射频电路设计的常见问题
 
1、数字电路模块和模拟电路模块之间的干扰
 
如果模拟电路(射频)和数字电路单独工作,可能各自工作良好。但是,一旦将二者放在同一块电路板上,使用同一个电源一起工作,整个系统很可能就不稳定。这主要是因为数字信号频繁地在地和正电源(>3 V)之间摆动,而且周期特别短,常常是纳秒级的。由于较大的振幅和较短的切换时间。使得这些数字信号包含大量且独立于切换频率的高频成分。在模拟部分,从无线调谐回路传到无线设备接收部分的信号一般小于lμV。因此数字信号与射频信号之间的差别会达到120dB。显然,如果不能使数字信号与射频信号很好地分离。微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。
 
2、供电电源的噪声干扰
 
射频电路对于电源噪声相当敏感,尤其是对毛刺电压和其他高频谐波。微控制器会在每个内部时钟周期内短时间突然吸人大部分电流,这是由于现代微控制器都采用 CMOS工艺制造。因此。假设一个微控制器以lMHz的内部时钟频率运行,它将以此频率从电源提取电流。如果不采取合适的电源去耦,必将引起电源线上的电压毛刺。如果这些电压毛刺到达电路RF部分的电源引脚,严重时可能导致工作失效。
 
3、不合理的地线
 
如果RF电路的地线处理不当,可能产生一些奇怪的现象。对于数字电路设计,即使没有地线层,大多数数字电路功能也表现良好。而在RF频段,即使一根很短的地线也会如电感器一样作用。粗略地计算,每毫米长度的电感量约为l nH,433 MHz时10toni PCB线路的感抗约27Ω。如果不采用地线层,大多数地线将会较长,电路将无法具有设计的特性。
 
4、天线对其他模拟电路部分的辐射干扰
 
在PCB电路设计中,板上通常还有其他模拟电路。例如,许多电路上都有模,数转换(ADC)或数/模转换器(DAC)。射频发送器的天线发出的高频信号可能会到达ADC的模拟淙攵恕R蛭魏蔚缏废呗范伎赡苋缣煜咭谎⒊龌蚪邮誖F信号。如果ADC输入端的处理不合理,RF信号可能在ADC输入的ESD二极管内自激。从而引起ADC偏差。
射频电路设计的常见问题
继续阅读
5G 常用术语大全

AAS(Active Antenna System),有源天线系统,可以看成是 RRU 与天线的组合,它将有源的射频收发单元与无源的天线阵列集于一体。

什么是频域?为什么它对 RF 设计、分析和测试如此重要?

我们今天接着《为什么射频(RF)如此重要?》继续谈一下射频设计的另一个重要方面——频域。作为一个射频工程师来说,最重要的是要学会在频域中思考。我们在《一文学会傅里叶变换》文章中,详细介绍过时域与频域的关系。通过傅里叶变换,一个时变信号可以表示成几个频率的分量合成。

为什么射频(RF)如此重要?

今天我们接着来聊一个老生常谈的话题——什么是射频?为什么离不开射频?

5G 射频前端的终局之战:毫米波

他首先指出,在最近几年,随着 5G 的到来,整个射频前端产业获得了飞速的发展,产品形态也从离散的器件,发展到模组化,并随之出现了很多新的名词,比如 PAMiD,PAMiF,DiFEM 等等。

SAW 滤波器设计——从谐振器到滤波器

今天我们继续分享一篇关于声波滤波器的文章《RF filter design – from resonators to filters》,文章作者是 Gergely Simon,最初发表在onscale.com的blog。【射频学堂】翻译整理,分享大家学习参阅。