解决互联家居中各种多标准无线通信设备面临的挑战

分享到:

解决互联家居中各种多标准无线通信设备面临的挑战
 
我们大多数人都很熟悉支持在家居中内容共享和互联网接入服务的 Wi-Fi 标准。但除此之外,还存在许多物联网(IoT) 技术,如 Bluetooth® Low Energy (LE)、Zigbee® 和 Thread®。这些低功耗、低数据速率的无线标准常用于门锁、LED 照明和电器等物联网互联产品。
 
这些不同的技术会构成一定的挑战,那就是供应商必须提前决定为自己的设备选择哪种技术。例如,选择 Zigbee 或低功耗蓝牙(或两者都选择)时,每种选择都会对产品设计产生独特的影响。
 
展望未来,将出现更多针对类似智能家居用例的技术,比如基于 IP 的互联家居计划,它将多种其他技术(802.15.4 和低功耗蓝牙)组合成单个标准。这使得在技术和面向未来需求的解决方案之间作出选择更具挑战性。
 
虽然如今的通信设备一般都会采用某种形式的动态多协议(DMP) 支持技术,但使用这种方法需要进行多方面权衡。单靠 DMP 不足以充分实现互联家居的优势。若想实现真正的无缝连接,只能通过同时侦听网络上的所有设备来实现,而非只侦听一部分设备。
 

图 1:随着智能家居技术的迅猛发展,确保基于不同标准的设备能够快速有效地通信也更具挑战性。

图 1:随着智能家居技术的迅猛发展,确保基于不同标准的设备能够快速有效地通信也更具挑战性。

 

ConcurrentConnectTM 技术即解决方案效?

 

如今,客户不必再作出选择或妥协。多协议支持功能将实现下一个重大飞跃(即 Qorvo 的 ConcurrentConnectTM 技术),通过使用不同的协议(无论是 Zigbee + CHIP、Zigbee + 蓝牙 LE 至智能手机、CHIP + 低功耗蓝牙 Mesh, 还是其它多协议应用场景),持续流畅地为两个或多个网络提供服务。借助 ConcurrentConnectTM 技术,经由不同网络连接的家居设备可以获得独特的无缝运行体验,而不会出现性能损耗。

 

为了说明这一点,我们来看看使用标准节点组合 ZigBee 或 Thread 和低功耗蓝牙设备,但不支持 ConcurrentConnectTM 的真实网络情况。由于节点不具备并发连接/侦听能力,它只能在这些标准之间来回切换,且每次只能使用一个标准通信。除了明显的效率低下问题,该切换方式还会导致通信掉线和延迟,这是因为仅允许一个标准进行通信,而此时其他标准遭遇阻塞,直至介质再次处于空闲状态为止。因此,在设定时间段内的通信量会遭遇瓶颈。
 
借助采用 ConcurrentConnectTM 技术,可实现并发侦听,从而允许从低功耗蓝牙至 ZigBee 或 Thread 的近瞬时切换,且几乎不会出现通信掉线的情况。因此,设备之间通信的速度更快、效率更高、扩展性更强,并且能够接收更多的数据包。这样一来,就可以实现协议之间前所未有的单设备并发能力。
 
与功能强大的软件开发套件结合使用时,Qorvo 独特的单芯片、单射频解决方案可以同时管理来自多个标准或协议的数据流量,而且未检测到延迟。此外,设计师还可以精简产品组件,实现更小巧、更美观的外形尺寸,降低产品成本,使其更加便于支持。利用 ConcurrentConnectTM 支持,客户可以获得近乎无限的开发创新用例选择,而这些选择在标准支持方面具有更大的灵活性。
图 2:ConcurrentConnectTM 技术(图右侧所示)可同时管理来自不同标准和协议的通信,而且未检测到延迟。
图 2:ConcurrentConnectTM 技术(图右侧所示)可同时管理来自不同标准和协议的通信,而且未检测到延迟
 
它为什么更有效?
 
当单个无线电必须同时支持多个协议时,将面临硬件和软件层面的重大挑战。这是因为每个协议都有自己的规范,规定设备应如何及何时侦听传入数据包和发送传出数据包。
 
协议中的某些阶段可能有固定的时间间隔,在此期间无线电可预测何时应切换到正确的频率(例如:低功耗蓝牙“连接中”阶段)。然而,大部分时间,尤其是在侦听阶段(即实际连接阶段之前,检测备选连接之时),无线电需要以异步方式持续检测传入数据包,无法事先知道需要无线电打开其接收窗口以接收数据包的具体时间。
 
此外,应用需具备简单易用的界面,以实现多协议的无缝操作,这样,应用开发人员就能突破协议依赖关系的壁垒,消除必要时切换到相应协议的压力。
 
从这方面讲,采用 Qorvo 并发侦听技术可以改变当前的模式。在硬件层面上,它支持对来自不同协议的数据包进行异步交错,使设备可以同时侦听多个协议,且在侦听期间不会出现盲点。
 
ConcurrentConnectTM 技术在随附软件开发套件中进行了抽象化,它提供简单易用的 API,便于应用开发人员在其应用中无缝地利用该功能。
 
这种方式可最大限度地利用介质,因为 ConcurrentConnectTM 技术在侦听来自多个协议的异步事件时可保持同步连接。
 
而 DMP 与之的主要区别在于可预测性和不可预测性。DMP 支持基于接收和发送数据包的可预测性;例如:它必须知道何时切换到低功耗蓝牙,何时返回到 Zigbee 或 Thread。ConcurrentConnectTM 技术则支持不可预测性,适用于同步和异步操作。
图 3:此图说明了利用 ConcurrentConnectTM 支持时 ZigBee 和 BLE 数据包的交错
 
ConcurrentConnectTM 技术基于 Qorvo 平台独特的硬件功能,即以最有效的方式检测和识别数据包。只要被检测到,数据包就会在硬件层实时完成标识流程,然后将数据包发送至适当的协议堆栈,无需在更高软件层面附加非实时路由逻辑。
 
通过使应用“认为”拥有自己的无线电,随附软件开发套件在为应用整合首选协议方面又向前迈出一大步。这简化了应用开发,使开发人员能够专注于真正的应用差异。
 
因此,它为家居网络带来了各种用例,包括网关、集线器和终端设备,这些用例都需要具备支持多个不同设备之间高频率数据传输的功能。利用 ConcurrentConnectTM 技术,网关可以在家居网络中的所有标准和协议之间无缝切换,使更多基于不同标准的终端设备得以连接和控制。此外,设计人员和设备所有者在扩大其家居连接时,不会受限于某种技术。
图 4.本框图描述了适用于Qorvo 硬件数据包路由的 ConcurrentConnectTM 支持。数据包处理过程是在硬件和软件层级上完成的。

 

继续阅读
『这个知识不太冷』UWB背景信息介绍(上)

我们可以说UWB是当今最好、最先进的定位技术,但证据呢?要回答这个问题,我们需要透过现象看本质。本文将探讨UWB技术的内部工作原理,并概述UWB和窄带定位方法之间的差异。

Wi-Fi 7来袭!技术前沿揭秘,新兴无线化应用前瞻!

Wi-Fi 7 简介作为“一种新颖且创新的解决方案”,最新的Wi-Fi 7(也称为IEEE 802.11be)标准在此前Wi-Fi 6的基础上,引入了320MHz带宽、4096正交调幅(QAM)、多资源单元(RU)、多链路操作(MLO)、增强型多用户多路复用、输入多输出(MU-MIMO)和多接入点协调(Multi-AP Coordination)等多项前沿技术。

纤薄时代来临——引领下一代触控板设计的 MEMS 压力传感器

笔记本电脑触控板是MEMS压力传感器的又一理想应用领域。借助这些传感器,触控板不仅能够在厚度上远胜于当前的解决方案,更能提供与现有产品相媲美的多功能手势功能。点击视频,了解Qorvo SensorFusion™ 如何改变触控方式,并提升最终用户的体验~

电路仿真知多少:一劳永逸搞定运算放大器建模?

尽管IC设计工程师在运算放大器的设计中几乎不可避免地要用到SPICE,但在一些更大的应用电路中,使用SPICE来仿真最终的运算放大器却十分困难;或者至少比我想象的困难得多。本文旨在解决这一问题,希望能够为运算放大器建模提供一个一劳永逸的解决方案。

『这个知识不太冷』探索超宽带技术

本文介绍了定位技术是如何起步的,以及新的发展进步如何持续改变我们的世界。您将了解UWB的基本信息及其优势,以及能够充分利用UWB技术的行业和设备信息。