氮化镓的十大关键要点

分享到:

没有时间?那就从这里开始吧!这个快速列表概述了这本书的要点。阅读本章节要点,如果有您感兴趣的内容,可在之前章节中查看完整的阐述说明。
 
 » 氮化镓 (GaN) 是一种高性能化合物半导体。GaN 是一种 III-V 直接带隙化合物半导体,就像砷化镓 (GaAs) 一样。化合物半导体可在许多微波射频 (RF) 应用领域中提供速度和功率的出色组合解决方案。
 
» GaN 可为射频应用带来独特的优势。GaN 独特的材料属性可为射频系统提供高功率附加效率 (PAE)、高功率输出、小巧外形、宽带宽、热优势和坚固耐用等优势。 
 
» 许多商业、国防和航空系统都使用 GaN。GaN 独特的优势支持许多新的和现有的应用,包括雷达、卫星通信、商业无线网络和有线电视。 
 
» GaN 对 5G 至关重要。为满足 5G 对数千兆网速和超低延迟性能的要求,设备制造商开始在大规模多路输入 / 多路输出 (MIMO) 系统中部署高功率 GaN。 
 
» GaN 可用于整个射频前端。GaN 最初用于制造功率放大器 (PA),但现在用于低噪声放大器 (LNA)、高功率开关和混频器。
 
» 多种 GaN 工艺和封装选项支持不同的应用。GaN 半导体制造商已经开发了多种工艺和封装选项,使系统设计人员能够更轻松地找到适合其特定应用的分立元件、单芯片微波集成电路 (MMIC) 或模块。
 
» GaN 极其可靠,即使在恶劣的环境下亦是如此。GaN 在 200℃温度条件下,平均无故障时间 (MTTF) 超过 1000 万小时 ;在 225℃ 温度条件下,MTTF 超过 100 万小时,比其他半导体技术更加可靠。
 
» GaN 可用于大批量生产应用。美国国防部 (DOD) 将 GaN 归类为最高级别制造成熟度 (MRL)(即 MRL 10)的工艺,这意味着全速生产和精益生产实践已经就绪。
 
» GaN 正在开拓新市场。由于其独特的性能,GaN 开始扩展到许多新的领域,包括汽车、医疗系统和先进的科学应用。
 
» GaN 技术将继续发展。未来 GaN 技术和封装方面的创新将支持更高的频率、更高的电压,甚至更宽的带宽,从而进一步推动 GaN 的普及。
 
《GaN 技术》系列
 
 
 
 
 
——本文来源:QORVOb半导体
继续阅读
WiFi 7:网速飞跃,低延迟新纪元(下)

WIFI 7采用WPA3标准,引入SAE新认证方法,使用AES加密和四元组握手确保无线网络安全和完整性。同时,PMK缓存技术优化连接性能。其高速率和低延迟适用于家庭、VR/AR、工业自动化和公共场所,提供流畅网络体验和智能服务。WPA3解决WPA2安全漏洞,增强无线网络安全性。

WiFi 7:网速飞跃,低延迟新纪元(上)

WiFi 7是一种新的无线通信技术,旨在提供更高的数据传输速率、更低的时延和更强的可靠性。通过引入新技术如320MHz带宽、4096-QAM调制和多链路操作,WiFi 7的潜在传输速率高达46Gbps,约为WiFi 6的3倍,且延迟低于5毫秒。此外,它提高了频谱效率,减少了干扰,支持更多设备同时连接,并增强了安全性和节能性。然而,现有设备可能不兼容WiFi 7,且其覆盖范围相对有限。

电动汽车动力蓄电池管理系统的关键性与构成

电动汽车其动力蓄电池由成百上千块电芯构成,为车辆提供了强大的动力来源。然而,这些电芯之间的微小差异,如内阻、容量和电压的微小差别,可能在长时间使用中引发散热不均、过度充放电等问题。这些问题不仅影响电池性能,更可能带来电池损坏甚至爆炸的严重风险。因此,一套高效、精准的电池管理系统成为确保电动汽车安全、稳定运行的关键。

蓄电池管理系统的分类及其在电动汽车中的应用

随着电动汽车市场的蓬勃发展,对于动力蓄电池管理系统的要求也日益提高。磷酸铁锂和三元锂等不同类型的电池因其特性差异,对BMS(电池管理系统)的功能和性能提出了不同的挑战。工程师们为了应对这些挑战,除了在电池包结构、工艺和散热方面进行改进外,还对BMS的分类和功能进行了深入研究。

利用SiC FET独特优势,巩固领先地位

回首2023,碳化硅和氮化镓行业取得了哪些进步?出现了哪些变化?2024将迎来哪些新机遇和新挑战?为更好地解读产业格局,探索未来的前进方向,行家说三代半、行家极光奖联合策划了《行家瞭望——2024,火力全开》专题报道。