GaN 如何帮助有线电视提供商找到平衡

分享到:

有线电视提供商在升级网络时要把握好分寸。他们需要在不降低性能和可靠性的情况下,满足客户对容量的需求。很多提供商借助 GaN 技术来保持平衡,原因如下。
 
对速度、容量、性能和可靠性的需求
 
随着视频、音乐、游戏和在线媒体内容消费的普及,人们需要更快电缆速度和更高容量的数据传输。这让北美有线电视运营商陷入困境,难以在不降低信号完整性和性能的情况下增强网络以满足这类需求。氮化镓 (GaN) 功率放大器技术应运而生,它具有市场所需的线性度、热特性和效率,可满足混合光纤同轴 (HFC) 的性能要求,并支持可靠的有线电视运营。
 
本文节选自 Qorvo 设计峰会系列网络研讨会,重点介绍了行业领域的重大改进,这些领域的进展将助力下一代技术发展。
 
 
GaN
 
 深入了解
 
GaN
 
作为设计峰会系列的一部分,与 Qorvo 专家一起深入探讨这一主题。网络研讨会探讨了革新下一代技术的进展情况。
 
增益单元放大技术的发展
 
在过去的 25 年里,砷化镓 (GaAs)、GaN 混合体和单片微波集成电路 (MMIC) 等有线电视技术不断进步,扩展带宽并提高系统性能,以符合最新的有线电缆数据服务接口规范 (DOCSIS)。GaN 器件在效率、线性度和性能上都超出了必要的规范要求,确保在 HFC 网络中实现可靠的数据传输和信号完整性。
 
有线电视半导体技术的发展
 
采用 GaN 技术,增益单元性能提升,有线电视多系统运营商 (MSO) 可以提高线性功率输出。这带来了诸多益处,不仅可以降低升级成本,而且可以把光纤放在离客户更近的地方,以提供更优质的服务。此外,还可以减少或去除网络链中的放大器。
 
图 1 比较了有线电视增益单元结构中常用的材料技术的相关特性。可以明显看出,GaN 为 MSO 提供了多个关键的系统级优势。
 
GaN
图 1.与其它半导体技术相比,基于 GaN 的器件特性。
 
用 GaN 改善线性功率输出
 
随着从 DOCSIS 3.0、DOCSIS 3.1 发展到 DOCSIS 4.0(支持高达 1.8 Ghz 下游频谱的标准),有源功率器件的非线性行为让行业面临重大挑战。不一致的线性度会降低信号质量,在数字信道上产生误码,有时在解调信号时会导致整个设备故障。使用 GaN 有助于改善线性度下降的情况,有助于避免信号质量问题和设备故障。
 
Qorvo 在设计和制造有线电视放大器方面的专业知识可以追溯至行业早期。事实上,Qorvo 是第一家推出采用了碳化硅基氮化镓 (GaN-on-SiC) 的有线电视增益单元的公司。
 
GaN 以其优越的性能特点,推动有线电视应用从 GaAs 到 GaN 的大规模转变。GaN 所提供的更高输出水平、更高耐用性和优异的热性能是这一转变的关键催化剂。
 
随着有线电视带宽的不断扩展,工程师和系统架构师正在为网络升级寻找合适的技术。为了满足更高的带宽和数据速率需求,必须保持线性度。保持增益单元或放大器的线性度取决于四个因素:半导体技术、电路设计、功耗和散热设计/性能。GaN 在这些方面具有优势,提供的功率高达 10 W/mm,而典型的 GaAs 设计只有 1 W/mm(见图 2)。
 
线性输出功率方面的进步
 
GaN
图 2.GaAs、GaN 和 Si 技术的效率和复合输出功率比较。
 
结语
 
现在,MSO 在将其网络升级到新的 DOCSIS 标准时,有了满足容量需求的可靠选择。GaN 技术能提供更好的数据传输,具有符合严格设计限制的必要特性,而基于 GaN 的放大器为下一代设计提供了理想的构建模块。
 
关于作者
 
GaN
Bob Simmers
CATV 和宽带接入产品部门产品营销经理
 
Bob 因其在推出一整套新型解决方案方面所做出的贡献而荣获 Qorvo 奖项,这些解决方案帮助客户在应对有线电视和光纤到户 (FTTH) 应用的 RF 挑战中脱颖而出。他是 RF 专家团队的成员之一,对有线 MSO 和类似客户的趋势与创新解决方案拥有深入的洞察力。
 
文章为原创,转载请注明原网址:https://rf.eefocus.com/article/id-336144
 
相关资讯
从单品智能到全屋互联:智能家居物联网技术的革新方向​

智能家居物联网技术从单品智能向全屋互联转型。高精度传感器如MEMS技术温湿度传感器实时感知环境,Wi-Fi 6、Zigbee 3.0等无线通信技术协同,5G融合拓展场景。AI实现主动决策,统一通信协议打破设备壁垒,边缘计算提升数据处理实时性与隐私安全性。

氮化镓快充,为何成为手机、笔记本等设备的“充电新宠”

氮化镓快充因卓越性能成电子设备“充电新宠”。作为宽禁带半导体材料,它禁带宽度、击穿电场强度远超硅基材料,具备高工作电压、低导通电阻、快开关速度的特性,由此实现高效能与小型化结合,且兼容多种设备,通过先进保护机制保障安全,满足市场对快充的迫切需求。

汽车智能化浪潮中,射频前端如何赋能车规级通信​

在汽车智能化进程中,射频前端(RF)作为车规级通信核心,连接天线与收发机电路,通过发射和接收链路实现数字信号与无线电磁波信号转换。其关键器件如功率放大器、低噪声放大器等各司其职,经信号处理保障车辆在卫星通信、V2X等多场景下,实现稳定高效的信息交互与传输。

氮化镓射频器件:突破传统半导体极限的高频功率技术革命

在半导体技术演进中,氮化镓作为宽带隙材料,凭借 3.4 电子伏特大能隙,具备高击穿电场、高电子饱和速度等特性。通过 MOCVD 或 MBE 技术在异质衬底生长,射频应用常选碳化硅衬底。这些特性与工艺使其在高频、高功率场景优势显著,革新无线通信、消费电子等领域的射频技术应用。

智能家居变革中的微波传感器

微波传感器基于电磁波传播与反射原理,发射特定频率微波信号并接收回波实现环境感知,通过分析回波的频率偏移、相位变化及信号强度捕捉目标信息。其非接触式感知不受光照影响、穿透性强、检测范围广,在智能家居安防、照明、健康监测等领域应用,正推动行业变革。

精彩活动