信号带宽和示波器带宽(模拟带宽)关系?

分享到:

1、信号的带宽和信道带宽关系

信号带宽是信号频谱的宽度,也就是信号的最高频率分量与最低频率分量之差,譬如,一个由数个正弦波叠加成的方波信号,其最低频率分量是其基频,假定为f=2kHz,其最高频率分量是其7次谐波频率,即7f=7×2=14kHz,因此该信号带宽为7f-f=14-2=12kHz。信道带宽则限定了允许通过该信道的信号下限频率和上限频率,也就是限定了一个频率通带。比如一个信道允许的通带为1.5kHz至15kHz,其带宽为13.5kHz,上面这个方波信号的所有频率成分当然能从该信道通过,如果不考虑衰减、时延以及噪声等因素,通过此信道的该信号会毫不失真。然而,如果一个基频为1kHz的方波,通过该信道肯定失真会很严重;方波信号若基频为2kHz,但最高谐波频率为18kHz,带宽超出了信道带宽,其高次谐波会被信道滤除,通过该信道接收到的方波没有发送的质量好;那么,如果方波信号基频为500Hz,最高频率分量是11次谐波的频率为5.5kHz,其带宽只需要5kHz,远小于信道带宽,是否就能很好地通过该信道呢?其实,该信号在信道上传输时,基频被滤掉了,仅各次谐波能够通过,信号波形一定是不堪入目的。

说信号带宽就先说说频域吧。频域这词大家也经常听到了。所有的时域信号经过傅立叶变换就可以在频域中表示出来。频域就是一个人为创造出来的实际不存在的域。在这个域里只存在正弦波,没有其它东西。时域中真实存在的信号经过傅立叶分解被分解成不同频率和幅度的正弦波分量,可以在频域中表示出来。正弦波是最干净的信号,每个正弦波在频域中就是一个点。其它实际信号的频谱都是“不干净”的,包含很多的频率分量。那么实际信号在频域里最高的那个频率分量就被称为信号的带宽。让我们看看一个理想的100MHz的理想方波带宽是多少。很遗憾通过傅立叶变换,理想方波有n个谐波分量。难道理想方波的带宽是无穷大?如果非要这么说,也没错,不过这对我们的实际工作没有任何指导意义。于是人们通过大量的试验总结发现:信号的绝大部分能量都集中在信号的前几次谐波分量当中。方波,是一个频谱分量众多的信号,其包括了基波和高次谐波。它可以由很多个正弦波叠加而成。而示波器的带宽是有限的,所以使用示波器观察方波时,如果带宽不够,会把高次的谐波滤掉,方波看起来就像正弦波了。

2.1、信号带宽和上升时间的关系

总结了信号带宽与上升时间的关系:BW=0.35/TrBW为信号带宽位为GHz,Tr是上升时间单位为ns。我们来看看一个上升时间是10ns的信号,通过公式计算信号带宽是35MHz,而一个上升时间为1ns的信号,信号带宽就是350MHz。那么第一个信号我们就可以用100MHz的示波器来测量,而第二个信号用同一个示波器测试会有很大的失真。这里我们说的是上升时间不是频率。也就是说如果同样是一个50MHz的信号,上升时间不同,信号带宽是不同的。但是实际当中我们更多情况下是不知道上升时间而只知道信号频率的。怎么办?那就近似推导吧。一般ASIC芯片的接口信号,上升时间大约是信号周期的百分之7。根据这个关系,代入上面的公式就可以得到带宽和频率的关系。BW=5f。f是信号频率。这样,一个50MHz的信号,我们最好能用一个250MHz带宽的示波器来测量,才能得到一个很好的结果。为什么示波器上升时间 Tr=0.35/BW ? 

射频, RF, 示波器

2.2、信号带宽和信号频率的关系

 

信号带宽和信号频率的关系BW=0.35/RT=5f一般普通信号的Tr=7%*T,其中:T=1/f)。实际信号的带宽:信号谐波幅值将为0次波(基波)的70%(即下降3dB)时的谐波频率。如果你测试的是一个理想的50MHz正弦波,用100MHz带宽的示波器够用么?答案不够,需要250MHz带宽示波器。

 

3、信号的带宽和示波器带宽关系

 

示波器带宽是示波器的首要指标,和放大器的带宽一样,是所谓的-3dB点,即:在示波器的输入端加正弦波,幅度衰减至-3dB(70.7%=0.707)时的频率点就是示波器的带宽。

简单的定义是:示波器测得正弦波的幅度不低于真实正弦波信号3dB 的幅度时的最高频率

根据电压幅度计算:20log(0.707)=-3dB

根据功率计算:10log(0.5)=-3dB

如果我们用100MHz带宽的示波器测量:幅值为1V ,频率为100MHz 的正弦波时,实际得到的幅值会不小于0.707V。

射频, RF, 示波器

那么作为示波器的首要参数指标,“带宽不足”对波形测量有哪些影响呢 ?我们用20M、60M、100M带宽的示波器分别观察20M的方波信号 。

射频, RF, 示波器

20M示波器

射频, RF, 示波器

60M示波器

射频, RF, 示波器

100M示波器

由上面三张图可以看出:

20M示波器基本无法观察到方波形状,另外100M示波器的观察效果比60M示波器要好,下面我们来一起分析原因:

射频, RF, 示波器

方波信号有限次谐波合成波形图

射频, RF, 示波器

20M方波频谱上图中,我们可以看到方波是由基波以及3、5、7、9……次谐波分量递加而成。所以20M的方波包含20M基波、60M三次谐波,100M五次谐波,140M七次谐波……如果要对波形进行准确测量,应该让示波器的带宽大于波形的主要谐波分量。因此对于正弦波可以要求示波器的带宽大于波形的频率,但是对与非正弦波则要求示波器的带宽大于波形的最大主要谐波频率。

带宽不足具体的影响表现在以下两个方面:

1、由低带宽导致主要谐波分量消失,使原本规则的波形呈圆弧状接近正弦波;

2、低带宽给波形的上升时间和幅度的测量带来较大的误差。

所以示波器的带宽越高,实际测量也就越精确,当然价格和成本也会更高,那么我们需要多大带宽的示波器才合适呢?一般所测信号最大频率的5倍,就是最合适的带宽,即带宽的5倍法则。使用示波器测量信号的通用法则是:示波器的带宽是被测信号的频率的5 倍。示波器带宽指的是正弦输入信号衰减到其实际幅度的70.7%时的频率值,带宽决定着示波器对信号的基本测量能力,随着信号频率的增加,示波器对信号的准确显示能力将下降。如果没有足够的带宽,示波器将无法分辨高频变化,幅度将出现失真,边缘将会消失,细节数据将被丢失,得到的关于信号的所有特性都是没有意义的方波,是一个频谱分量众多的信号,其包括了基波和高次谐波。它可以由很多个正弦波叠加而成。而示波器的带宽是有限的,所以使用示波器观察方波时,如果带宽不够,会把高次的谐波滤掉,方波看起来就像正弦波了。

射频, RF, 示波器

射频, RF, 示波器

示波器参数

1,示波器带宽

带宽是示波器最重要的指标之一。

模拟示波器的带宽是一个固定的值,数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽

只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。

2,示波器采样率

常见的数字存储示波的采样率单位是1GSa/s,代表什么含义?

  是每秒采样1G个点。但是,数字示波器的采样率不是固定不变的,随着你的屏幕分辨率不同,其每秒采样的次数也不同。1G是指采样的最大值。 

 3,波形捕获率/波形刷新率

500,000 wfm/s =50万帧/秒,代表短的死区时间,更大概率的快速捕获异常事件,让故障干扰无处可逃

 

图片 11

 

继续阅读
16个问题讲透了运算放大器基础的知识点

运算放大器具有两个输入端和一个输出端,如图1-1所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,如果先后分别从这两个输入端输入同样的信号,则在输出端会得到电压相同但极性相反的输出信号:输出端输出的信号与同相输人端的信号同相,而与反相输入端的信号反相。

WiFi 7 比 WiFi 6 快 4.8 倍?

高通作为芯片供应商,已经开始为下一代 Wi-Fi 技术 Wi-Fi 7 制定计划。高通在 2022 年世界移动通信大会上表示,计划在 2022 年底之前推出全球首款 Wi-Fi 7 芯片 FastConnect 7800,作为 Snapdragon Connect 规范的一部分。 Wi-Fi 7 规范,也称为 802.11be 超高吞吐量——IEEE 目前关于 802.11be 现状的论文要求在 2024 年某个时候批准该标准。

路由器天线越多信号越好是真的吗?

天线多的路由器卖的好 其实当我们打开电商网站的无线路由器产品页时,可以发现销量排名前十位的无线路由器产品,拥有三根及三根以上天线的无线路由器占据了半数以上的位置。

移动通信网络的网间干扰来源有哪些?

随着5G网络的大规模推广进行中,移动通信网络逐渐成为电子工程师的学习重要内容,其中之一是移动通信网络的网间干扰来源有哪些?今天本文将回答这些问题。

射频电路的电源设计要点总结

成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。