5GAiP天线工艺技术之FOWLP

分享到:

  高频率造成天线有源化趋势,手机侧的AiP天线应运而生
与2G/3G/4G移动网络相比,5G网络将在更高的频段C-Band(3.7-4.2GHz)和毫米波(24.25GHz-52.6GHz)上部署,而更高频率的信号就意味着更大的馈线损耗,根据硕贝德测算,传统4G手机射频前端的馈线损耗只有1dB不到,但是在毫米波频段线损在2-4dB。

射频, RF, 天线

因此,5G时代将天线与射频前端进一步集成就成为大势所趋,而这一集成趋势在宏基站侧就体现为基于Massive MIMO的AAU,在室分基站侧就体现为由DAS向数字化室分的演进,在手机侧就体现为AiP(Antenna in Package)天线的诞生。所谓AiP天线是基于封装材料与工艺,将天线与芯片集成在封装内,实现系统级无线功能的技术。AiP技术顺应了硅基半导体工艺集成度提高的趋势,兼顾了天线性能、成本及体积,代表着近年来天线技术的重大成就及5G毫米波频段终端天线的技术升级方向。

射频, RF, 天线

FOWLP有望成为AiP天线的主流技术工艺

尽管目前AiP的实现工艺主要有LTCC(低温共烧结陶瓷)、HDI(高密度互联)及FOWLP(晶圆级扇出式封装)三种,但是我们认为,基于更高的集成度、更好的散热性、更低的传输损耗等优势,结合目前的产业化进度,FOWLP有望成为AiP天线的主流技术工艺。

FOWLP是fan-out Wafer Level Package的缩写,其中WLP(晶圆级封装)是以BGA(Ball Grid Array)技术为基础,以wafer为加工对象,在wafer上同时对众多芯片进行封装测试,最后切割成单个器件,可直接贴装到基板或者PCB板上的封装方案。WLP由于不需要中介层(interposer)、填充物(underfill)与导线架,并且省略黏晶、打线等制程,因此能够大幅减少材料及人工成本,此外,WLP大多采用RDL(重布线层)与Bumping(凸块)技术作为I/O排线手段,因此具有较小的封装尺寸和较佳电性表现等优势,多应用于注重轻薄、节能的3C芯片中。

WLP可分为fan-in(标准型扇入式)及fan-out(扩散性扇出式)两种,其中fan-in是在wafer未进行切片前对wafer进行封装,之后再进行切片分割,完成后的封装大小和芯片尺寸接近。而fan-out则是基于wafer重构技术,将芯片重新布局到一块人工晶圆上,然后按照与标准的WLP工艺类似的步骤进行封装,封装面积大于芯片面积。传统的WLP封装多采用fan-in形态,应用于pin(引脚)数量较少的IC芯片,伴随着IC引脚数目的增加,对锡球间距的要求日趋严格,加上PCB排线对于IC封装后尺寸以及引脚位置的调整要求,因此衍生出fan-out。

射频, RF, 天线

FOWLP的具体实现步骤如下图所示,第一步需要完成晶圆的制备及切割,即将晶圆放入划片胶带中,切割成各个单元,与此同时准备洁净处理后的金属载板;第二步将芯片从晶圆拾取并排布在金属载板上;第三步以模塑料(molding compound)密封载板完成制模;第四步从载板上移走已经成型的重建芯片;第五步在重分布层(RDL)上配置I/O连接;第六步在I/O连接口形成铜凸块;最后对已成型的塑封体进行切割。

射频, RF, 天线

由于FOWLP是从裸晶端点拉出所需电路到RDL层进而形成封装,因此在最终的产品形态中不存在封装载板,可以减少成本并降低芯片厚度,此外,由于RDL层有助于缩短互联电路的长度,可有效降低高频信号的传输损耗。

苹果A10处理器是FOWLP工艺大范围推广的催化剂

2009-2010年间Intel Mobile率先推动FOWLP在手机基带芯片的单芯片封装过程中得到应用。2014年台积电宣布其inFOWLP(integrated fan-out)进入量产准备,可实现封装厚度250um,RDL间距10um,从具体应用而言,台积电8mm x 8mm平台可用于射频和无线芯片的封装,15mm x 15mm可用于应用处理器和基带芯片封装,而更大尺寸如25mm x 25mm可用于图形处理器和网络等应用的芯片封装。

射频, RF, 天线

在台积电inFOWLP工艺中,铜互连形成在铝PAD上,应用于扇出型区域以制造出高性能的无源器件如电感和电容。以3.3nH的电感为例,根据麦姆斯咨询数据,65nm的CMOS采用on-chip封装其品质因子Q为12,而InFO封装则可达到峰值42。电感与模塑料越接近,损耗因子越小,Q值越高,由此也印证了如前所述的FOWLP的低传输损耗的优势。

射频, RF, 天线

2016年苹果首次在iPhone中采用了基于FOWLP工艺的处理器A10,根据Techinsights数据,由台积电代工的A10处理器基于16nm finFET制程工艺,采用inFO(integrated fan-out)封装工艺,使用了5-5µm、10-10µm和10-10µm三层RDL。在苹果和台积电的合力推动下,设备商Veeco、封装测试供应商Amkor、日月光、星科金朋、晶圆代工厂Global Foundries等均在2016年大力加码FOWLP相关技术、产品布局。

根据Yole数据,在苹果A10、A11处理器的带动下,2015-2017年全球FOWLP市场规模CAGR接近90%,于2018年达到约14亿美金规模,面对渐行渐近的5G时代,在高通、三星、华为海思等玩家陆续进入的过程中,FOWLP全球总产值有望在2022年超过23亿美金,2019-2022年间的CAGR接近20%。

射频, RF, 天线

硕贝德联合中芯长电已成功发布了基于inFO的AiP天线产品

19年3月19日中芯长电在CSTIC发布了世界首个超宽频双极化的5G毫米波AiP天线,该产品采用了基于FOWLP封装SmartAiP工艺技术,该工艺能够帮助客户实现24GHz-43GHz超宽频信号收发、达到12.5dB的超高天线增益、以及适合智能手机终端对超薄厚度要求等优势,并且有进一步实现射频前端模组集成封装的能力。

根据中芯长电讯,该工艺方案与领先的天线方案提供商硕贝德合作,现已获得中国和美国专利授权,可通过超高的垂直铜柱互连提供更强的三维集成功能,加上中芯长电成熟的多层双面RDL技术,结合晶圆级精准的多层天线结构、芯片倒装及表面被动组件,使得SmartAiP实现了5G天线与射频前端芯片模块化和微型化的高度集成加工。


射频, RF, 天线

 

 

 

继续阅读
RF电路设计中的常见问题汇总

随着通信技术的发展,无线射频电路技术运用越来越广。其中的射频电路的性能指标直接影响整个产品的质量,射频电路印制电路板( PCB)的抗干扰设计对于减小系统电磁信息辐射具有重要的意义。全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。本文将列举并回答RF电路设计的常见问题。

无源物联网技术探讨

针对现有物联场景中RFID技术面临的干扰大、通信距离受限、不支 持连续组网、不支持定位等技术痛点,提出了联合干扰抑制、极简空口协议栈设计、基于蜂窝网络的粗定位等无源物联网关键技术。面向未来商用部署,分析了无源物联网端到端的网络架构和无线网络部署的可行性与链路预算。

射频功率放大器PA的常见指标和测试方法

身为射频工程师,射频前端中的功率放大器PA可以说是重中之重。作为无线通信系统中非常关键的器件,PA的主要功能是将小功率信号放大,得到一定大小的射频输出功率。因为无线信号在空气中有很大的衰减,为了通信业务质量的稳定,这势必就需要将已调制的信号放大到足够大再从天线发射出去,可以说任何无线通信系统都少不了它。我们把它称作射频前端器件皇冠上的明珠,其实一点也不为过。本文就来介绍一下射频功率放大器的常见指标及测试方法。

Qorvo 携手联发科,获得更多智能手机、路由器和汽车平台设计订单

2022 年 12 月 1 日,移动应用、基础设施与航空航天、国防应用中 RF 解决方案的领先供应商 Qorvo 宣布与联发科合作,获得多个设计订单,扩大了 Qorvo 在 5G 智能手机领域的领导地位,包括移动 Wi-Fi、Wi-Fi 路由器和 5G/Wi-Fi 汽车平台。

傅立叶分析和小波分析你真的懂了吗?

大家都应该学过,傅立叶变换是能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。