一种紧凑型Doherty放大器设计方法

分享到:

本文描述了395MHz-455MHz Doherty放大器的一种紧凑型设计方法。在本文中,90度混合电桥被用作Doherty合成器,用来替代传统的四分之一波长线来实现Doherty合成器,随着应用频率的降低四分之一波长线将占用更大的布板面积,甚至有的时候无法实现。在本文中,我们设计实现了一种非常紧凑型的Doherty放大器,并将和基于相同输入输出匹配电路实现的平衡式AB类放大器做性能对比,最终我们设计实现了在输出功率43dBm时,漏极效率43%,未校正邻道泄漏比-33dBc,输出信号的峰均比7.5dB。
 
早在1936年,W.H. Doherty首次提出了一种高效节能的放大器结构[1]。由于效率高,结构简单并且不需要复杂的外围电路,Doherty放大器获得了非常广泛的应用。典型的Doherty放大器结构框图如图1所示,由载波放大器,峰值放大器以及Doherty合成器组成。传统的Doherty合成器会随着频率的降低占用更大的PCB板面积,甚至有的时候体积庞大到无法实现布板。如果采用传统设计方法,在RO4350B 20mil基材上设计实现395MHz-455MHz的Doherty合成器,合成器中的每条四分之一波长线长度将超过100mm,这就意味着需要更大的PCB板面积,从而增加了产品的成本。
 
395MHz-455MHz Doherty放大器
图1、Doherty放大器的结构框图
 
在本文中,基于90度混合电桥,我们设计并实现了一种非常紧凑型的Doherty高效放大器,其中载波放大器和峰值放大器采用飞思卡尔的功率放大器MRFE6S9045N。为了更好地理解本设计,我们将分析传统Doherty放大器的工作原理,并将与本设计的工作原理作对比。
 
1、设计方法
 
本文中的90度混合电桥采用ANAREN公司的11303-3。90度混合电桥其等效的分支线耦合器的电路图如图2所示。尽管90度混合电桥和分支线耦合器具有相同的功能,但是就395MHz-455MHz频率而言,实现体积相差甚远,11303-3器件的封装面积为16mm*12mm,如果在RO4350B 20mil厚基材上设计395MHz-455MHz分支线耦合器,其占用的布板面积约为100mm*100mm。运用奇偶模分析方法分析分支线耦合器[2],我们可以得到图2中(b) (c) (d)电路在电气功能上是完全等效的,图2中电路(e)和电路(f)在电气功能上是完全等效的。当然,我们也可以借助安捷伦仿真软件Advanced Design System (ADS)  进行S参数仿真,以验证上述结论。
 
395MHz-455MHz Doherty放大器
395MHz-455MHz Doherty放大器
图2、90度混合电桥的微带等效电路
 
通过上述分析,我们可以看出90度混合电桥和传统的Doherty合成器具有完全相同的电气性能,对于低频应用而言,90度混合电桥实现面积更小。
 
Doherty放大器的基本工作原理是有源负载牵引[3]。正如图1所示,Doherty放大器由载波放大器和峰值放大器组成,Doherty合成器将在载波放大器和峰值放大器连接在一起。为了能够更好地理解Doherty放大器的工作原理,本文用安捷伦的Agilent’s Advanced Design System (ADS)软件搭建了仿真工程如图3所示。在仿真工程中,我们将把功率放大管抽象成理想的压控电流源,在归一化输入电压前提下,通过图3中的VAR expression控件设置 载波放大器和峰值放大器电流,载波放大器和峰值放大器电流和输入电压的关系曲线如图4左上子图所示。
 
395MHz-455MHz Doherty放大器
图3、Doherty 放大器工作原理仿真工程
 
当归一化输入电压为(0~0.5)时,输出匹配电路呈现给载波放大器的阻抗是所对应的传统AB类放大器阻抗的两倍,如图4左下子图所示。由于输出匹配电路阻抗提高到传统AB类放大器的两倍,所以当归一化输入电压达到0.5时,载波放大器将达到传统放大器临界饱和点,因此效率也将达到临界饱和点的效率,比如B类放大器的临界饱和效率为Pi/4。在这个输入电压范围内载波放大器和基于同样器件设计的传统AB类放大器相比,因为载波放大器输出匹配电路所呈现的阻抗是传统AB类放大器的两倍,所以理论上载波放大器的增益将要高出AB类放大器3dB,输出1dB压缩点降低3dB。
 
当归一化输入电压为(0.5~1)时,峰值放大器开始工作导通,峰值放大器输出的电流在Doherty有源负载牵引技术中扮演重要作用。如图4右上子图所示,在归一化输入电压为(0.5~1)范围内载波放大器始终保持在临界饱和状态,所以载波放大器的效率始终保持在临界饱和效率,载波放大器输出匹配电路所呈现的阻抗也将由2Zopt调制到Zopt,相对应的峰值放大器输出匹配电路所呈现的阻抗将有无穷大调制到Zopt,如图4左下子图所示。此时归一化的峰值放大器的漏极电压也将由0.5调制到1,因此峰值放大器也将由临界饱和效率的50%,逐步提高到临界饱和效率,最终Doherty放大器的合成效率如图4右下子图所示。同样我们也可以通过ADS仿真验证,理想Doherty放大器的输入输出功率是完全线性的[4][5]。
 
图片5
图4、Doherty放大器ADS仿真结果
 
2、设计实现
 
本文采用MRFE6S9045N设计实现了紧凑型395MHz-455MHz Doherty放大器,为了对比Doherty放大器的性能,本文也同样制作调试了基于同样器件同样匹配电路的AB类,平衡式放大器,设计实现的Doherty放大器如图5所示。在输入端口,我们采用90度混合电桥将功放输入信号一分为二,分别送给载波放大器和峰值放大器,载波放大器偏置在AB类,静态偏执电流为350mA。峰值放大器偏置在C类,栅极偏置电压为1.5V,载波放大器和峰值放大器放大后的信号将通过另一个90度混合电桥合成后输出。如图5所示,输出90度混合电桥的隔离端口的一段50欧姆的开口线,其作用是作为载波放大器和峰值放大器共同的相位补偿线。
 
395MHz-455MHz Doherty放大器
图5、紧凑型Doherty放大器实物图
 
3、测试结果
 
在本文中,将用连续波单音信号测试所设计的功率放大器性能。选取395MHz和455MHz测试结果罗列如下。
在395MHz处,测试所得的增益和效率对输出功率的曲线如图6所示,测试数据显示在输出功率为43dBm时,功放漏极效率为43%, 饱和输出功率高于49dBm。
 
395MHz-455MHz Doherty放大器
图6、395MHz 增益和效率测试数据
 
在455MHz处,测试所得的增益和效率对输出功率的曲线如图7所示,测试数据显示在输出功率为43dBm时,功放漏极效率为45%, 饱和输出功率高于49dBm。
 
395MHz-455MHz Doherty放大器
图7、455MHz 增益和效率测试数据
 
典型的单载波W-CDMA信号测试性能如表1所示,测试所用输入信号的峰均比为9.9dB(在互补累计分布函数概率为0.01%条件下测得)功放输出平均功率为43dBm。
 
表1、Doherty 放大器单载波W-CDMA信号测试性能
395MHz-455MHz Doherty放大器
 
为了对比所设计的Doherty放大器和传统AB类放大器性能,本文设计调试了一个基于同样器件和同样匹配电路的平衡式AB类放大器,典型的单载波W-CDMA信号测试性能如表2所示,测试所用输入信号的峰均比为9.9dB(在互补累计分布函数概率为0.01%条件下测得),功放输出平均功率为43dBm,从表2中我们可以看出,对于同样的43dBm的输出功率,Doherty放大器呈现了更高的效率,平衡式放大器呈现了更好的线性。
 
表2、AB类的平衡式放大器W-CDMA信号测试性能
395MHz-455MHz Doherty放大器
 
4、结论
 
本文提出了一种395MHz到455MHz紧凑型Doherty放大器的设计方法, 采用了飞思卡尔公司的LDMOS器件MRFE6S9045N。设计实现了在单载波W-CDMA输出平均功率为43dBm时,漏极效率高于43%,相对于传统的Doherty放大器设计方法,本文呈现了一种紧凑型Doherty设计方法,节约了PCB板的面积,并且达到了很好的性能。本文也证明了在低频段设计应用上,90度混合电桥可以用来作为Doherty的合成器。
 
本文作者特别感谢飞思卡尔公司提供的帮助,包括提供ADS仿真环境以及测试平台。
 
本文转载自微波射频网公众号,作者:王洪胜 王尧青 赵明,安富利电子元件 
 
参考文献:
 
[1]  W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, vol. 24, no. 9, pp. 1163–1182, Sep. 1936
[2]  Reinhold Ludwig, Gene Bogdanov, RF Circuit Design Theory and Applications. Beijing, China: Publishing House of Electronics Idustry.
[3]  S.C. Cripps, RF Power Amplifiers for Wireless Communications. Norwood, MA: Artech House, 1999.
[4]  Y. Yang, J. Yi, Y.Y. Woo, and B. Kim, “Optimum design for linearity and efficiency of microwave doherty amplifier using a new load matching technique,” Microwave J., vol. 44, no. 12, pp. 20–36,
[5]  F.H. Raab, “Efficiency of Doherty RF power amplifier system,” IEEE Trans. Broadcast., vol. BC-33, no. 3, pp. 77–83, Sep. 1987.
 
继续阅读
适用于 200kW 驱动装置逆变器的 AC Propulsion 电源模块

AC Propulsion 开发出了电动汽车技术,并向全球汽车及其他客户提供产品和工程服务。为了给独特的低成本驱动装置逆变器开发第二代电源模块,AC Propulsion 需要开关效率比现有 IGBT 设计高 2-5% 的功率半导体。

Matter 1.1 发布——助益产品和开发者

Matter 1.1 的发布是数百家公司和公司个人代表的共同成就,他们作为成员在连接标准联盟这一合作平台上为技术的演进和成功持续贡献。Matter 1.1 能够帮助优化开发流程和提供新的用户体验,带我们进入 Matter 发展旅程的新阶段。

用于 EMI 滤波和电压隔离的安全电容器

安全电容器是一种常用于电子产品中的电容器,它能够提供 EMI 滤波和电压隔离的功能。EMI 滤波是指通过电容器来滤除电磁干扰(EMI),从而保证电子产品的正常运行;电压隔离则是指通过电容器来隔离高电压和低电压电路,从而保证电子产品的安全性。安全电容器通常采用金属化聚丙烯薄膜作为电介质,具有高电容值、低损耗、稳定性好等特点。本文我们将探讨用于过滤交流电源线上的电磁干扰(EMI,也称为射频干扰,RFI)、天线耦合以及在 DC/DC 转换器中提供电压隔离的安全电容器。

刻蚀工艺简介

在现代科技的发展中,刻蚀工艺是一项非常重要的微纳加工技术,它被广泛应用于微电子、光学和纳米加工等领域。刻蚀工艺通过化学反应子轰击刻蚀掉材料表面的一部分,从而实现对材料的精细加工。本文将为简要介绍刻蚀工艺。

保护继电器保护什么?

保护继电器是一种智能设备,它能够接收来自电流、电压、电阻、温度、甚至光线等各种输入信号,并通过与预设点的比较来提供视觉反馈、通信输出和控制警报等功能。此外,它还可以关闭或打开电源,用于保护工业环境中的电机和接地故障。而调节继电器则是一种特殊类型的保护继电器,当运行参数超过预设限值时,会被激活以进行调节。