打造理想半导体开关所面临的挑战

分享到:

这篇博客文章最初由 United Silicon Carbide (UnitedSiC) 发布,该公司于 2021 年 11 月加入 Qorvo 大家庭。UnitedSiC 是一家领先的碳化硅 (SiC) 功率半导体制造商,它的加入促使 Qorvo 将业务扩展到电动汽车 (EV)、工业电源、电路保护、可再生能源和数据中心电源等快速增长的市场。
 
碳化硅 (SiC) 功率半导体
 
自 1958 年 IBM 设计出首个管状“开关模式电源”以来,打造无传导和开关损耗的理想开关一直是电源转换器设计者的梦想。如今,各项开关技术的通态损耗都有了明显降低;采用最新的宽带隙半导体的产品,在 750V 额定电压下的电阻已能达到小于 6 毫欧的水平。目前这项技术还未达到其物理极限,预计在不久的将来,该阻值还会进一步降低。
 
在当今的高性能功率设计中,边缘速率 (V/ns) 有所提高,降低了开关损耗,可实现更高的频率、更小的磁性元件和更高的功率密度。然而,这些快速边缘速率增加了造成电磁干扰设计相关问题的可能性,这些问题会与电路寄生效应发生相互作用,导致不必要的振荡和电压尖峰。借助良好的设计实践,这些问题可以使用小缓冲电路解决。
 
实际电路中的高电流边缘速率会导致电压尖峰和振铃
 
那么,这个问题有多严重呢?如果我们看到速率达到 3000A/µs,也就是典型的碳化硅开关值,那么根据熟悉的 E=-Ldi/dt 公式,仅 100nH 连接电感或漏电电感就会产生 300V 尖峰电压。100nH 仅仅是几英寸 PCB 迹线的电感或变压器漏电电感的真实值,所以这就是通常会看到的情况,而且需要一个好的示波器才能看到整个电压瞬态。不过该开关在看到瞬态方面没有问题,如果超过额定雪崩电压能量,会立即停止运转。在任何电路电容下,该尖峰都会振铃,从而让测量的电磁干扰释放达到峰值。
 
一个补救措施是尝试降低电路电感,但这通常不是一个实用的选择。此外,还可以大幅降低该开关的电压,代价是影响成本和导通电阻,也可以使用串联栅极电阻放缓边缘速率。这个仪器并不敏感,它延迟了波形,通过限制占空比限制了高频运行,还提高了开关损耗,同时几乎不影响振铃。
 
振铃可通过缓冲网络实现,支持快速开关,但会减少尖峰和抑制振铃。在大电容器和大功率电阻时代,这看起来像是一个“暴力破解”方法,与 IGBT 等一起使用,试图减少大“尾”电流效应。然而,对于 SiC FET 等开关而言,这是一个非常高效的解决方案。在这种情况下,主要使用缓冲电路抑制振铃,同时限制峰值电压。因为器件电容非常低,振铃频率高,所以只需要一个非常小的缓冲电路电容,通常为 200pF 左右,并使用几欧姆的串联电阻。与预期一样,电阻会耗散部分功率,但是它实际上会通过限制硬开关和软开关应用中的电压/电流重叠来降低关闭损耗。
 
在高负荷下使用缓冲电路可提升整体效率
 
打开时,缓冲电路会耗散额外的功率,因此需要考虑总损耗 E(ON) + E(OFF) 才能公正地评估其优势。 将一些测量值代入E(TOTAL) 以体现 40 毫欧 SiC FET 在 40kHz 下的运行状况,考虑了三种情况:无缓冲电路,RG(ON) 和 RG(OFF) 为 5 欧姆(蓝线);200pF/10 欧姆缓冲电路,RG(ON) = 5 欧姆,RG(OFF) = 0 欧姆(黄线);无缓冲电路,RG(ON) = 5 欧姆,RG(OFF) = 0 欧姆(绿线)。这会得出最低的 E(TOTAL);但是振铃过高,因而不可行。
 
在高电流下,使用缓冲电路的好处很明显,与仅调整栅极电阻相比,在 40A 下的耗散降低约 10.9W。在轻负载下,缓冲电路的整体损耗较高,但是在这些条件下,系统耗散很低。
 
碳化硅 (SiC) 功率半导体
图1 使用小缓冲电路节省能耗
碳化硅 (SiC) 功率半导体
图2 显示了缓冲电路减少振铃的效果。
 
缓冲电路易于实施
 
综上所述,缓冲电路是一个不错的解决方案,但切实可行吗?在实践中,独立的缓冲电路电阻耗散的功率不到 1 瓦,而且可以是小型表面安装器件。电容需要高额定电压,但是电容值低,因此体积也小。
 
SIC FET 的导电损耗和动态损耗都低,接近理想开关,而且只需增加一个小缓冲电路,就可以发挥全部潜力,且不会造成过高的电磁干扰或电压应力问题。为了使其更加“完美”,SiC FET 具有简单的栅极驱动和低损耗整体二极管,对外部散热的热阻非常低。还有什么理由不喜欢它呢?
 
Qorvo 大家庭
 
 
750V 额定电压
 
 
缓冲网络
 
 
文章为原创,转载请注明原网址:https://rf.eefocus.com/article/id-336618
 
继续阅读
存储技术SRAM详解

随着微电子技术的迅猛发展,SRAM 逐渐呈现出高集成度、快速及低功耗的发展趋势。在半导体存储器的发展中,静态存储器(SRAM)由于其广泛的应用成为其中不可或缺的重要一员。近年来SRAM在改善系统性能、提高芯片可靠性、降低成本等方面都起到了积极的作用。

常见开放通讯协议OPC解析

自从OPC标准出现之后,很多人都在使用,但是对于一些刚接触的人来说还是比较懵的。OPC全称是Object Linking and Embedding(OLE) for Process Control,用于过程控制的OLE(即对象链接和嵌入)。它包括一整套接口、属性和方法的标准集,用于过程控制和制造业自动化系统。OPC是以OLE/COM机制作为应用程序的通讯标准,而OLE/COM是一种客户/服务器模式,具有语言无关性、代码重用性、易于集成性等优点。

PLC控制器的选型、工作方式及常见故障与维修方法

PLC控制器通常由三个部分组成:中央处理器(CPU)、输入模块和输出模块。输入模块负责接受来自传感器、按钮等设备的信号输入并将其转换为数字信号输入到CPU中;CPU根据预设的程序进行逻辑运算后输出指令到输出模块,输出模块将CPU输出的操作信号转换为实际操作,例如控制继电器、电磁阀等负载的开关和控制。

电子系统中电源EMI的解决办法

本文首先概述了在复杂的电子系统中电源带来的严重问题:即EMI,通常简称为噪声。电源会产生EMI,必须加以解决,那么问题的根源是什么?通常有何缓解措施?本文介绍减少EMI的策略,提出了一种解决方案,能够减少EMI、保持效率,并将电源放入有限的解决方案空间中。

单片机MCU的基本结构与工作原理

诸如手机、PC外围、遥控器,至汽车电子、工业上的步进马达、机器手臂的控制等,都可见到MCU的身影。汽车电子中所使用的半导体即车规级芯片,主要有主控芯片(MCU/SoC),功率芯片(IGBT),传感器芯片(CIS)和存储芯片(Flash)四大类,车规级芯片广泛应用于汽车的动力系统、智能座舱及自动驾驶系统,是汽车电子不可或缺的核心元器件。