『这个知识不太冷』如何为你的应用选择UWB的拓扑结构?

分享到:

『这个知识不太冷』系列,旨在帮助小伙伴们唤醒知识的记忆,将挑选一部分Qorvo划重点的知识点,结合产业现状解读,以此温故知新、查漏补缺。本篇将继续探讨UWB的。
 
点击这里,回顾UWB背景信息介绍(上篇)精彩内容
 
UWB系统考虑因素回顾
 
在本节中,我们来简要介绍一下UWB的系统组件,以及硬件和软件选择如何影响系统的性能。
 
锚点和标签
 
要了解UWB系统,您需要理解锚点和标签这两个术语。锚点通常就是固定的UWB设备。标签通常是指移动的UWB设备。锚点和标签可交换信息,以便确定两者之间的距离。标签的确切位置可通过与多个锚点通信来确定。
 
 
一些设备即可作为锚点,也可作为标签。例如,当两个移动手机使用UWB来计算相互之间的距离时,它们可以在计算过程中转化角色,交替地用作标签和锚点。
 
存储单元和处理能力
 
典型的UWB设备需要具备一定程度处理能力和特定功能。对于简单的标签,要求处理器具有少量的闪存(可编程非易失性存储器)和数据存储器(易失性随机存取存储器,或RAM)。对于锚点应用,比如到达时间差(TDoA)中使用的锚点,可能需要具有更多闪存和RAM的处理器,在许多情况下还需要数据回传。
 
图1显示了标签(具有运动检测)或锚点(具有回传接口,如以太网或Wi-Fi接口)的常见架构。对于锚点,可能需要不同类型的处理器,具体取决于系统规模和工作负载/吞吐量需求。
 
典型的UWB架构(锚点和标签)
图1:典型的UWB架构(锚点和标签)
 
天线
 
另一个系统考虑因素就是天线。不同的应用会需要不同的天线。例如,标签通常使用小型全向性天线。锚点则可能要使用定向天线,具体取决于拓扑结构。
 
软件栈
 
UWB通信组件和应用之间的重要互连就是UWB软件栈,如图2所示。软件栈有助于协调与外部设备的互操作性和共存。此外,软件可实现UWB通信组件和内部微控制器之间的通信。例如,在控制智能手机和汽车之间的连接时,软件负责协调通信。
 
软件还可以同时管理多个应用和用例。例如,某个解决方案可能是控制扬声器、照明装置、加热系统等智能家居生态系统的组成部分。它可以与所有UWB标签和UWB支持设备通信,同时利用位置信息控制环境、锁门和开门、启用和禁用报警系统等。UWB软件栈可同时处理所有这些不同的情况。
 
Qorvo的UWB软件栈示例
图2:Qorvo的UWB软件栈示例
 
使用UWB软件栈可确保UWB通信组件满足不同应用的需求。此外,从最终用户和整体系统设计角度来说,利用该软件的许多功能可以让事情变得更简单。
 
功能优先级排序
 
在一些应用场景下,不同功能需要进行优先级排序。例如,假设在某个应用中,电源管理和电池使用寿命很重要,比位置更新速率或数据吞吐量更重要。在这种情况下,可使用软件优化功耗,将设备设置为不用时关闭,需要通信时开启。
 
另一种情况就是,传感器LOS信号不理想或是来自不同的方向。此时,可使用软件将结果平均,以获得精确的距离信息;软件还可以平滑处理比其他信号更嘈杂的信号。为了获得更精确的结果(尤其是在快速移动应用中),或为了添加有关设备方向的信息,软件还可以将来自UWB芯片组的数据与来自惯性测量装置(包括加速计、陀螺仪和磁力计等)的数据整合在一起。
 
文章转载自Qorvo半导体微信公众号
 
继续阅读
仓库物流遇到难题?UWB自信应对:“看我的!”

物流难题考验着每一家企业,而百威啤酒厂(Budweiser Budvar Brewery)近期面临的困境尤为独特。这家酒厂的产品只在一座位于捷克的城市České Budějovice(Budweis)酿造;其生产十种不同口味的啤酒,每种啤酒的标签都印有数十种语言,并出口到76个国家。这种多样性带来了令人生畏的360种产品组合,要求仓库能够容纳超过20,000个托盘,还需兼容室内、室外两种尺寸规格。

技术干货-史密斯圆图(Smith Chart)

当涉及到射频领域时,我们不得不提到这个巧夺天工的工具。史密斯圆图(Smith Chart)是一种以映射原理为基础的图解方法,用于分析和设计射频电路。

永磁同步电机:攻克技术难关,解锁性能新高!

永磁同步电机的设计与优化集中于最大化磁能利用、热管理、精密控制策略及结构耐用性,以实现高效率、高功率密度和长期稳定运行。关键技术挑战包括合理设计磁路以增强磁通密度同时防止高温退磁,采用有效散热方案保护永磁体,运用先进控制算法如矢量控制和直接转矩控制实现精准调速,以及在机械设计中考虑振动与噪声控制。此外,选择合适的永磁材料与提高定子槽利用率、优化绕组设计对于提升电机性能至关重要。

永磁同步电机:原理简析,高效稳定之选

永磁同步电机是一种融合永磁材料与同步电机技术的高效电动机,由带有三相绕组的定子和嵌入永磁体的转子构成。其工作原理基于定子绕组产生的旋转磁场与转子永磁体磁场的同步互动,带动转子转动。为维持同步状态及适应不同负载条件,需采用电子控制器调节电流频率和相位,确保高效稳定运行。该电机无刷设计减少了磨损,提高了可靠性和维护便利性,且能精准控制转速、承受大负载波动、具备宽广调速范围和优异的低速高扭矩性能。因高效节能、功率密度高,永磁同步电机广泛应用于电动汽车、精密工业和可再生能源等领域。

单电压驱动革新:技术挑战与性能飞跃

单电压驱动方式在电机控制领域曾经普遍使用,但随着应用需求的提高,其技术难点逐渐凸显,如转速调节范围有限、震动和噪音控制挑战、能量效率低以及电路设计复杂等。为提升单电压驱动性能,需要采取一系列改进措施,包括选用高效电机和材料、引入高级控制策略、利用先进电力电子技术、优化散热设计、引入传感器实现实时反馈控制、进行系统一体化设计以及实现故障检测和诊断功能。

精彩活动