技术干货-史密斯圆图(Smith Chart)

分享到:

当涉及到射频领域时,我们不得不提到这个巧夺天工的工具。史密斯圆图(Smith Chart)是一种以映射原理为基础的图解方法,用于分析和设计射频电路。它的应用广泛,从阻抗匹配到电路调试,再到滤波器的优化,都离不开这个神奇的圆形图。

让我们深入了解一下史密斯圆图的形成过程、如何读取数据以及它在射频工程中的重要性。

一、史密斯圆图的形成过程

1.    反射系数和特征阻抗:首先,我们需要理解反射系数。反射系数描述了特征阻抗 (Z_0) 和负载阻抗 (Z_L) 之间的失配程度。具体表达式如下:

 

[ \Gamma_0 = \frac{Z_L + Z_0}{Z_L - Z_0} ]

 

在射频通信中,我们希望传输线的传输距离远,传输功率足够大,同时传输线的损耗要尽量小。为了兼顾这些需求,通常传输线的特征阻抗选为50Ω。这样,反射系数可以归一化为:

 

[ \Gamma_0 = \frac{r + jx + 1}{r + jx - 1} ]

 

其中 (r = 50R) 且 (x = 50X)。

 

2.    构建Smith圆图:从归一化的阻抗复平面出发,我们可以形成Smith圆图的雏形。加入两条电抗线并弯曲,就得到了完整的Smith圆图。这个图包含了在阻抗复平面中由直线弯曲而成的圆,以及在导纳复平面中由直线弯曲而成的圆,共同构成了阻抗导纳圆图。

二、Smith圆图的知识点

•      阻抗变化轨迹:通过Smith圆图,我们可以读出驻波比(SWR)和反射系数(Γ):

1.    在史密斯图上绘制出归一化负载阻抗点。

2.    以圆心到归一化负载阻抗点的距离为半径做等驻波系数圆。

3.    在圆与实轴的负半轴相交的地方向下引出直线,在Smith圆图下侧SWR轴上读取VSWR的值。

4.    从Smith圆图的圆心到归一化负载阻抗点做连线,并延长,在单位圆的外围可以读出相位角度,由此可以读出Γ的值。

•      史密斯圆图的应用:史密斯圆图在射频工程中非常重要。它帮助我们理解电路的特性,进行阻抗匹配、电路调试和滤波器优化。无论是初学者还是专业人员,都应该掌握这个神奇的工具。

总之,史密斯圆图是射频工程中的一把利器,它让电路设计变得简单而直观。如果你想深入了解更多关于史密斯圆图的知识,欢迎继续探索!

相关资讯
UWB技术:厘米级精度定位的“隐形雷达”如何改变生活?

UWB 作为超宽带无载波通信技术,借极窄脉冲与宽频谱实现数据传输,基于 ToF 原理测量信号传播时间计算距离,结合多边定位算法,利用高时间分辨率克服多径效应,以厘米级精度定位赋能多领域应用。

射频滤波器:无线通信的核心枢纽,从类型到应用全解析

射频滤波器是无线通信关键组件,基于电磁理论,通过不同频率信号阻抗特性差异实现选频。分无源(LC、腔体、SAW、BAW 滤波器等)和有源两类,应用于移动、卫星通信等多领域,正朝高频小型,集成与高性能发展

Qorvo® Matter™ 解决方案新增三款QPG6200系列SoC

近日,全球领先的连接和电源解决方案供应商 Qorvo®(纳斯达克代码:QRVO)宣布拓展其QPG6200产品组合,全新推出三款Matter系统级芯片(SoC)。此次扩展的产品系列具有超低的功耗,并采用Qorvo独有的ConcurrentConnect™技术,可为智能家居、工业自动化和物联网市场提供强大的多协议支持功能和无缝互操作性。

卫星通信崛起,无线通信格局将如何重塑?​

卫星通信以卫星为中继,通过地面发射端传输信号至卫星,经放大、变频处理后回传,依轨道高度分为GEO、MEO、LEO系统,各有传输特性与应用场景。随着卫星制造、发射技术革新及5G NTN标准推进,其成本降低且与地面网络深度融合,凭借广域覆盖与高速传输优势,全方位重塑无线通信格局。

6G通信技术:从理论突破到现实应用的跨越​

6G通信技术以理论突破为基石,在技术原理层面实现创新。太赫兹频段的高频特性提供超宽带宽支撑高速传输,AI深度融入信号处理优化传输策略,“空天地海”一体化网络架构拓展覆盖范围。通感一体化、太赫兹通信等关键技术突破,推动其从理论迈向应用。

精彩活动