基于DDS驱动PLL结构的宽带频率合成器设计

分享到:

结合数字式频率合成器(DDs)和集成锁相环(PLL)各自的优点,研制并设计了以DDS芯片AD9954和集成锁相芯片ADF4113构成的高分 辨率、低杂散、宽频段频率合成器,并对该频率合成器进行了分析和仿真,从仿真和测试结果看,该频率合成器达到了设计目标。该频率合成器的输出频率范围为 594~999MHz,频率步进为5Hz,相位噪声为-91dBc。

1

DDS的参考信号由晶振产生,其频率为fref。DDS输出的信号频率为fDDS,频率值由频率控制字(FTW)控制。锁相环(PLL)的参考信号由 DDS的输出信号驱动。VCO的输出频率由PLL芯片的电荷泵(CP)输出,并通过低通滤波器(LPF)后控制。频率合成器的输出信号为VCO的输出信 号。该频率合成器通过单片机提供控制信号,以改变DDS中FTW和PLL的分频比。

  VCO输出信号频率与DDS输出信号频率间的关系为:

2

  而DDS的输出频率由频率控制字K控制,且有:

3

  式中:M是DDS的相位累加器的位数;fref是DDS的内部时钟。这样,式(1)可以写成:

4

在图1所示的结构中,由于DDS模块具有较高的频率分辨率,所以从式(3)可以看出,理论上输出信号具有比传统结构更高的频率分辨率。设计中晶振频率为 400MHz,PLL分频比为27。由式(3)计算可知,该频率源可以实现5Hz的频率分辨率。其中DDS的输出频率为22~37MHz,所以系统输出频 率范围为594~999MHz,达到了设计要求。

1.2 电路实现

对于DDS模 块,采用了AD9954芯片产生低频参考信号。AD9954是ADI公司最新的AgiIeRF合成器,具有32位的频率控制字。在400MHz的时钟频率 下,输出频率分辨率可以达到约4.7×10-5Hz,具有14位可编程移相单元。芯片采用了先进的:DDS技术,内部集成14位的高性能DAC。该DAC 具备优秀的动态性能,相位噪声优于-120dBc/

5

PLL模块在该设计结构中尤为重要。在此采用ADF4113锁相环芯片。ADI公司研制的数字锁相频率合成器ADF4113,最高工作频率可达 4GHz,主要应用于无线射频领域,用以构成数字锁相环,锁定某一频率。该电路内部资源主要包括可编程的模分频 器:8/9,16/17,3z/33,64/65;可编程的14位参考频率分频器;可编程的射频信号分频器;3线串行总线接口;模拟和数字的锁定状态检测 功能。该芯片的最高鉴相频率达到55MHz,芯片的底噪为-171dBc/

6

2 电路分析与仿真

为了分析和评估提出的频率综合器性能,采用ADISimPLL软件对该方案的相位噪声模拟仿真。仿真结果如图4,图5所示。这里给出频率为810MHz,环路带宽为120kHz的相位噪声仿真图形以及锁定时间图形,从图中可以看出,该方案满足了设计目标的要求。

7

8

3 实验及测量结果

为了检验文中给出的频率综合器性能,使用Agi-lentE4401B对扫频源的相位噪声、杂散进行测量,测量结果如图6~图8所示。 594~999MHz包含了很多频点,测试时选择了一系列较有代表性的点进行测量,限于篇幅,这里给出810MHz频点相位噪声和杂散的测量结果。由图可 见,相噪为-92dBc/

9

 

10

4 结语

介绍了一种采用DDS激励PLL的频率合成器,有效地克服了宽带系统中DDS输出频率较低和PLL频率分辨率低的缺点。取长补短实现频率合成,实现了单一技术难以达到的效果。

继续阅读
俄罗斯自产5G基站,11月开始测试

近日,俄罗斯媒体报道,ANO Digital Economy表示,俄罗斯正在开发5G基站,将于今年11月份开始测试,并计划于2023年开始量产。

毫米波,距离我们还有多远?

根据预测,到今年年底,国内5G基站的数量将可能达到70万个。就在5G建设如火如荼的同时,随着R16版本的冻结,人们逐渐将关注目光放在5G下一阶段关键技术上。这其中,就包括号称5G杀手锏的毫米波技术。

射频电路设计常见问题盘点,还有老司机经验总结分享给你

在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。

5G赋能广泛物联,产业协同助力商用成功

自5G商用以来,我国5G在网络、终端、用户和应用生态方面均同步快速发展,成功实现了5G第一阶段规模商用,取得了全球领先地位。那接下来整个产业还需在哪些方面进一步努力?2020年8月15日,在中国电子信息博览会中国(深圳)5G峰会上,华为无线营销副总裁朱慧敏在演讲中做了精彩分享。

5G仿真解决方案 | 相控阵仿真技术详解

天线是移动通信系统的重要组成部分,随着移动通信技术的发展,天线形态越来越多样化,并且技术也日趋复杂。进入5G时代,大规模MIMO、波束赋形等成为关键技术,促使天线向着有源化、复杂化的方向演进。天线设计方式也需要与时俱进,采用先进的仿真手段应对复杂设计需求,满足5G时代天线不断提高的性能要求。