MC3361+MCU的低速光纤通信模块设计

分享到:

光纤通信做为一种新兴的高性能的串行通信技 术,已经在电力领域逐步展开应用。目前的光纤通信模块大多使用FPGA或DSP技术实现信号解调,虽然其传输速度快、效率高,但是成本高、技术复杂,而且 对于传输距离、电器隔离特性、可靠性、产品成本参数等都有极高的要求。而电力行业对光纤的应用主要还是集中在强电的控制方面,现场环境对光纤模块的通信速 度要求较低。所以,在电力系统的工程实际中,由于现场情况复杂、干扰信号繁多,致使高成本的高速光纤通信技术的应用并不十分理想。

鉴于光纤通信技术在电力系统中的应用现状,本文提出一种+结构的低速光纤通信模块设计方案。本设计硬件成本低、软件流程简单、性能稳定,输出信号为工业标准RS485信号或RS232信号,可直接与各种电力设备连接,非常适合在电力系统中广泛使用。

1调制解调原理

为了降低硬件成本和提高硬件电路的可靠性,本设计使用BFSK调制解调算法。BFSK的调制原理是用载波的频率来传送数字消息,即用所传送的数 字消息控制载波的频率。BFSK信号是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的 改变是瞬间完成的。

1.1调制原理

本文设计的光纤通信系统由通过内部程序控制通过PWM接口完成调制。外部设备与模块通过串行接口(包括RS232接口或RS485接口)连接,模块接收到数据后,首先将数据传输给,MCU通过UART接口接收到数据,MCU通过程序控制输出BFSK调制信号,调制后的信号直接发送至光纤发射接口发送出去。

进行BFSK调制时使用MCU串行接口接收外部设备发送的数据,BFSK的调制频率由程序控制,信号“1”对应于270KHz载频,信号“0” 对应于240KHz载频,波形如图2所示,上边的波形为未经调制的信号,下边的波形为经调制后的信号。MCU将调制后的载频信号通过PWM方式发送至光纤 发射接口,电信号转换成光信号。调制硬件原理框图如图1所示。

  

1

  图1调制硬件原理框图

2

  图2调制前后信号的波形图

1.2解调原理

BFSK的解调使用单片窄带调频接收芯片完成,片内包含振荡电路、混频电路、限幅放大器、积分鉴频器、滤波器、抑制器、扫描控制器及静噪开关电路。

解调电路原理图如图3所示。其中,185K网络标号为MCU输出185K矩形波信号,R1为限流电阻,C5、L4组成滤波电路,C12谐振电 容,信号经过R1、C5、L4及C12后,由MC3361第1脚输入,构成MC3361解调的第二本振级。图3中FSK网络标号为光纤接收接口输入的矩形 波信号,信号经过R4、R6分压,将信号高电平转换为500mV,再经过L6、C25进行滤波,及C27、L7、VD1、VD2二次限压滤波后,消除干扰 频率后,经过C1谐振,最终信号转变为正弦波信号。

  

  图3解调电路原理图

最终只有标准正弦波信号输入至MC3361的第16引脚,作为MC3361的第一中频IF输入信号,信号幅值为0V,峰值为500mV,频率为 270KHz或230KHz.在MC3361内部第二混频级进行混频处理,处理后的信号为455KHz的第二中频信号,由第3引脚输出,由455kHz陶 瓷滤波器选频,即图3中的Z4器件,再经第5脚输入MC3361的限幅放大器进行高增益放大,限幅放大级是整个电路的主要增益级。第8脚接鉴频电路,由 455kHz鉴频器Z3、R2及C26组成,经放大后的第二中频信号在内部进行鉴频解调,并经一级音频电压放大后由第9引脚输出信号,信号经过第10脚和 第11脚构成的有源滤波电路,再输入MC3361的第12脚进行载频检测并控制电子开关,最终经过解调的信号由第13引脚输出,直接输入MCU的引脚,由 MCU进行处理。

2软件设计

系统主程序分为两个主要流程:串行接口处理流程和光纤接口数据处理流程。

2.1串行接口处理流程

本流程的主要任务是检测串行接口是否接收到数据,如果串行接口接收到数据,设计中为了提高系统的稳定性和抗干扰能力,首先对数据进行拆分,将长 数据包拆分成若干个短数据包,并为每个数据包增加起始标识、校验码和结束标识,组成一个数据帧,每个数据帧正确传输结束再进行下一数据帧的传输。组成数据 帧后,由MCU对数据进行调制,并发送到光纤接口,将数据发送出去。

2.2光纤接口数据处理流程

本流程的主要任务是检测光纤接口是否接收到数据,如果光纤接口接收到数据,则首先验证数据帧格式,如果格式正确,则将有效数据提取出来重新组成完整数据包,并将数据包从串行接口发送出去,完成光纤接口到标准串行接口的数据传输。

系统软件设计流程如图4所示。

  

4

  图4软件设计流程图

3结束语

光纤通信做为一种高性能的通信技术,在工业现场中越来越突显出其优势,本文设计的低成本光纤通信模块在电力系统和其它工业控制中都有着良好的应 用前景,不但降低了系统的整体成本,也提高了光纤通信的可靠性和抗干扰能力。本光纤通信模块已经成功应用在多个控制系统中,运行稳定,性能良好,具有非常 重要的实际意义。

继续阅读
什么是射频、基带、调制、解调 -- 以 手机射频电路为例图解

DSP如果涉及通信,在这里指的究竟是什么?DSP和基带芯片、射频芯片是什么关系?它们的工作流程是怎样的?

搭建5G“天梯”,微波回传成为利器

微波回传不可能替代光纤成为主流回传方式,但确实为 5G 网络和宽带网络快速开通提供了一种低成本、有效的手段。5G 的商用不仅仅是 4G 带宽升级,而在于会催生更多创新业态,届时新的业态或许对微波回传会提出更多需求。

细而全的5G产业链详解

5G通信行业产业链条主要包括以下五个重要环节:(1)网络规划设计(前期技术研究及网络建设规划);(2)无线主设备(核心网、基站天线、射频器件、光器件/光模块、小基站等,无线配套、网络覆盖与优化环节开始布局);(3)传输设备(无线设备后需要有线传输链接,紧跟其后的包括光纤光缆、系统集成、IT 支持、增值服务等);(4)终端设备(芯片及终端配套);(5)运营商。除了以上五个重要环节

5G投资1.2万亿,周期可能超过8年,基站数量和成本都超4G两倍

韦乐平认为,5G频段高、基站多、基站贵、功耗高,相较4G,投资会大幅增加,投资模式也可能发生变化。他解释道,为了达到5G响应的速度,基站建设将至少是4G基站的两倍,5G基站的成本也超过4G基站的两倍,功耗则是4G基站的3倍,单从基站建设角度,5G投资大约是4G的1.5倍,全国总体投资规模将达到1.2万亿,投资周期可能超过8年。

有线电视的大当家: DOCSIS 3.1

说到有线电视提供商喜爱的技术,肯定是 DOCSIS 3.1(有线电缆数据服务接口规范),有线电视行业的最新标准。随着 5G 大行其道,DOCSIS 3.1(有缩略词真好)正在助力全球许多有线系统。与之前的 DOCSIS 3.0 相比,DOCSIS 3.1 提供千兆位速度,将有效下游数据速率从 160 Mbps 提高到 10 Gbps,将有效上游数据速率从 120 Mbps 提高到 1 Gbps。